Advanced Analysis of Cell Stability for Reliable SRAM PUFs

Alison Hosey, Md. Tauhidur Rahman, Kan Xiao, Domenic Forte, and Mohammad Tehranipoor
ECE Department, University of Connecticut
{ aph09003, tauhid, kanxiao, forte, tehrani} @engr.uconn.edu

ABSTRACT

A Physically Unclonable Function (PUF) is a structure
that when issued a challenge, it produces a unique and
reliable response which can be used as an identifier or a
cryptographic key. SRAM PUFs create unique responses
upon power up as certain SRAM cells output a 1 or 0 with
high probability due to uncontrollable process variations.
A current challenge in SRAM PUFs is their sensitivity to
temperature and voltage variations as well as aging. By
creating algorithms that isolate stable bits quickly and with
minimal testing, the use of SRAM PUF should become
more practical. In this paper, we explore the selection of
stable bits through enrollment under different conditions
(temperature, voltage, and aging) and also by exploiting
previously undiscovered interactions between neighboring
SRAM cells. We develop metrics that analyze the impact of
each neighboring cell and each enrollment condition. Our
metrics can be used to identify the best cells and conditions
for stable bit selection. We have analyzed data from Spartan
3 FPGA and our metrics identify the best neighborhood size
(16 stable neighbors) and best enrollment condition pair
(high temperature, high voltage and low temperature).

I. INTRODUCTION

Physical unclonable function is an emerging potential
security block for generating volatile secret keys in cryp-
tographic applications [5], [6], [7], [8], [9], [10], [11]. Au-
thentication, identification, counterfeit detection and cryp-
tographic key are the main applications of PUFs [1], [2],
[31, [4], [5], [6], [7], [8], [9], [10], [11]. PUFs offer a high
level of protection in cryptographic applications with strong
volatile key storage. PUFs are unclonable and inexpensive
by nature. They create a unique identifier by utilizing
the uncontrollable process variations that affect integrated
circuits. PUFs are issued a challenge and (ideally) produce a
unique and reliable response in return. Since this response is
unique to the device, it can therefore be used as a device ID
or key. Unlike previous methods, PUFs are less vulnerable
to attacks, and also require no additional manufacturing
steps. A variety of different types of PUFs have been
explored recently, including Arbiter PUF [5], ring-oscillator
(RO)-PUF [6], [14], SRAM PUF [7], [10], Latch PUF
[8], and many more. This paper explores utilizing the
popular SRAM PUF for identification and cryptographic
key generation. SRAM PUF offers the convenience of
using commonly available and integrated SRAM (instead of
including a dedicated hardware in the circuit) as well as the
capacity to provide large enough outputs for identifier/key
generation/storage [7], [10].

Although SRAM PUF offers many appealing features,
there are two main challenges to its current application.
First, SRAM PUF is quite sensitive to noise generated by
temperature and voltage level variations [10] [11] [13]

This sensitivity is not unique to SRAMs and can be seen
in a variety of electronics due to physical phenomena which
alter threshold voltages and other properties [9], [12], [14],
[16], [17]. Second, SRAM PUF also experiences the effects
of aging on the reliability of the output [10]. Previously,
error correcting code (ECC) [9], [10], [17] had been used
to repair errors in the SRAM output prior to use as a
cryptographic key. Unfortunately, ECC creates a substantial
amount of overhead while also increasing the likelihood of
secure information being leaked [9], [10], [15], [16], [17].
Alternatively, exhaustive measurements of the SRAM PUF
can be used to identify the most reliable cells [10], [11].
However, these are costly and do not extend well for devices
produced at high volume.

In our previous work, we have identified that neigh-
boring SRAM cells can be used to determine the more
reliable SRAM PUF cells [10]. Based on our observation,
we presented a simple bit selection algorithm. While the
SRAM PUF reliability improved dramatically compared to
random bit selection, our approach was mostly operating in
a blind fashion. Here we perform more advanced analysis
in order to identify the best cells and conditions. Our main
contributions include:

« Development of three new metrics to analyze the
relationships between neighboring SRAM cells in one
dimension — 1D (i.e., assuming that the SRAM data
is organized as one long array) and the influence of
environmental conditions.

« Utilization of these proposed metrics, real SRAM data
(over 1 billion measurement data) are examined in
greater detail and the effect of different temperature,
voltage, and aging conditions on reliability can be
more easily categorized. We determine the optimal
window and threshold sizes. We also identify the most
efficient measurement conditions for initial enrollment.

The rest of the paper is organized as follows. In Section
II, we describe the details of SRAM PUF application
in previous work. The proposed metrics for neighboring
SRAM cell analysis in 1D are described in Section IIL
Section IV will provide the results of our experimental test
setup. The conclusions drawn from this work as well as
intended future work will be given in Section V.

II. BACKGROUND

In recent years, there has been much investigation into
SRAM PUF as a simple but effective form of hardware-
based identification and key generation/storage. The us-
age of SRAM as the PUF medium is appealing for a
variety of reasons. Most notably, SRAM is commonly
available in most systems and therefore does not require
additional hardware. The uniqueness of output from one
SRAM compared to another is also the largest among
existing PUFs [11] [12] Each SRAM is composed of cells

which each contain a pair of cross-coupled inverters. Due
to uncontrollable variations in the manufacturing process,
different CMOS devices have different physical parameters
(e.g. doping-levels, transistor oxide thickness, etc.). When
an SRAM is powered-up, these variations affect the power-
up state of their associated cells. It has been observed that
certain cells have a strong preference to power-up to a 1 or
0 state. Cells that have no preference are deemed neutral
and power-up at random depending upon the influences of
environmental noise [13]. The more useful cells for PUF
output are the ones that strongly prefer 0 or 1.

By examining the power-up state of an SRAM, a unique
identifier can be created because the process variations
and resultant preferences are truly random (being entirely
dependent upon a physical anomaly). An SRAM PUF
identification system would be similar to the fingerprint
security measures found in biometrics. When fingerprints
are used for identification, the fingerprint is a unique
identifier which is compared to other fingerprints in a
database and subsequently accepted or rejected based upon
its authenticity. The SRAM PUF output (which is ideally a
unique and reliable response) would then be compared to
a known SRAM PUF response database and verified.

To ensure the reliability of the SRAM PUF response,
the output needs to either be error corrected in post-
processing or analyzed in such a way that only stable cells
are used. ECC uses specialized encoding and decoding
processes to ameliorate data instability. Unfortunately, such
processes create considerable overhead for implementation.
For example, [14] shows ECC requires additional ~ 87k
gates for 128-bit reliable key. For the latter, a bit selection
algorithm was recently proposed [10]. The basis of this
algorithm is to identify the most stable bits based upon
the performance of their neighboring cells in a series
of enrollment tests (testing under some extreme corner
conditions). The algorithm finds the cells which consistently
only output a value of 0’ or '1’ and then ranks their
overall stability using a weighting algorithm. The weighting
algorithm takes into account the number of stable and
unstable neighbors a cell has. Essentially, the farther away a
cell is from the nearest unstable cell (weight 0), the higher
weighted value it is assigned. As shown in Fig. 1, stable bits
(labeled S) and unstable bits (labeled U) are assigned based
upon these calculated stability weights. The cells that have
a weight greater than a predefined threshold are selected
as the most stable ones. While the measurements used
in the algorithm rely only upon fresh (un-aged) SRAM,
results showed that the algorithm was most successful in
identifying cells that were robust against aging (stable over
the lifetime of the device). Further, since the algorithm only
requires measurements at a few corner conditions, it allows
for a faster enrollment as well especially when considered
for high-volume products. Finally, identification of the most
stable cells to reduce the size of ECC, thereby decreasing
cost and secret leakage.

III. SRAM CELL STABILITY ANALYSIS WITH
PROPOSED METRICS

In this section, we explain the proposed metrics for
capturing the relationships between SRAM cells. While
intuition tells us that cells should be most influenced by
their neighbors, we do not necessarily know the physical
locations of all the cells (proprietary information) in a
memory. Hence, we shall assume 1D analysis for simplicity.

[sJulsfuls[s[s[s]s[s]ul]
Weighting based on neighbor cells’ behavior

[t [ofaJofJaJa]as[s[2a]s]ol]

Figure 1: Bit Selection Weighting Algorithm (Top: Stable
(S) and Unstable (U) bits; Bottom: Associated Weighted
Value) .

Figure 2: Target cell with (a)(red X) with w = 6 (dashed
outline) and (b) extends beyond the array (target cell X).

1D analysis means that the SRAM cells are assumed to be
ordered in one long array based on their logical address.
One benefit of our metrics is that they may end up exposing
the physical locations based on the correlations between
cells they capture.

We begin by defining some notation and important
variables. Let C represent the conditional probability of a
bit not flipping; w is the the window size used to assess
the neighborhood sum; and ¢ is the threshold weight of
a neighborhood sum (Fig. 2). The window size w is the
number of cells examined on either side of the target cell.
This value can only be of even value as we only analyze
neighbors around the target cell in a symmetric fashion.
For example, if w = 6, then the neighborhood of the target
cell would include 3 cells on the left of the target cell and
3 cells on the right of the target cell. This is shown in
2(a). In cases where the window size around a target cell
expands beyond the array of cells (2(b)), the analyses from
that target cell are ignored for consistency in analysis.

In determining the most stable cells, the number of stable
neighbors must be greater than or equal to ¢. Consider
window size w = 6. If + = 4, then we only consider the
target cell to be acceptably stable if at least 4 of its 6
neighbors analyzed are stable. In 3(a), this condition is true
and therefore the target cell would be accepted by our bit
selection algorithm. In 3(b), the target cell is not accepted
because it does not have enough stable neighbors.

i
tjoj1 /0 17 Af0 1 1710
(@)
1jo,0/0 1)lujfol1 010

Figure 3: Window includes (a) 4 stable cells (if T = 4, target
cell is accepted (A)) and (b) 2 stable cells (if T = 4, target
cell is not accepted (U)).

Based upon these variables, conditional probability can
be used to concisely describe the dependence of an SRAM
cell upon the stability of its neighbors. In essence, con-
ditional probability P(A|B) is the likelihood of an event
A occurring given that a separate event B has occurred.
Conditional probability can be written as

P(A,B)
P(B)

P(A|B) = (1)

where P(A,B) denotes the probability of events A and B
occurring while P(B) represents the probability of only B
occurring. In our analyses, we define conditional probability
for the probability of a cell being stable (i.e. not flipping)
given that the neighbors analyzed are stable (i.e. do not
flip). Event A is therefore the probability of a target cell not
flipping and event B is the probability that the target cells
neighbors do not flip. This relationship can be modified
so that event B allows for only a certain percentage, x, of
the neighboring cells to flip (i.e. if N is the number of
neighbors, then x = N/1).

We investigate three metrics based on conditional prob-
ability: (i) fotal neighborhood analysis that captures the
impact the number of stable neighbors in a window; (ii)
neighborhood pairs analysis which examines the influ-
ence of particular cells in the window; (iii) environmental
analysis that captures the effect of isolated environmental
conditions on the relationships of all cells in a window.

A. Total Neighborhood Analysis

This form of analysis calculates the stability of the target
cell based upon all of its neighbors within a specified win-
dow size w. We define the neighborhood based probability
as
P(A,B;w,1)

Cy=——
N TPBiw)

2

The notation P(X;y) means that the probability of a random
event X depends on the variable y. In this case, y is not
random, but chosen by the user. In Eqn. (2), event A is the
probability of the target cell not flipping while event B is the
probability of or more neighbors within the window size,
w, (i.e., if ¢ or more cells within a distance, d = w/2 from
the target cell) don’t flip. This metric focuses on the changes
in conditional probability for different window sizes and
threshold values. In our prior work [10], we assumed (based
on intuition) that the larger the threshold, the better the
result. However, the number of stable bits selected is lesser
as t increases. The benefit of this proposed metric is that
the ideal combination of w and ¢ for optimal stability results
can be determined for an SRAM and provide trends which
can be extended to the examination of all SRAMs of the
same type. If there exists some ¢ < w that is better or just
as good as r = w, then we will be able to identify more
stable bits for the PUF key than in [10].

B. Neighborhood Pairs Analysis

The intention behind this approach is to determine the
level of influence neighbors at specific intervals from the
target cell have. We define the neighborhood pair based
probability as
P(A,B;w)

= —m— 3)

C
NPT TP(Bw)

Here event A is the same as before. Assuming the target
cell is located at position i, we define event B as the
probability that the cells located at i —w/2 and i+ w/2
dont flip. The data of event B combines the data for the
neighborhood at two isolated conditions. In this case, t =2
(both of the two cells being examined must be stable for the
target cell to be considered acceptable). The benefits of this
analysis are that the influence of neighbors can be ranked.
In the original bit selection algorithm (Section II), all
neighbors were treated equally. However, with knowledge
of the rank/influence of each neighbor, we could actually
improve the bit selection. For example, neighbors with
larger (smaller) influence can be given larger (smaller)
weight in the sum calculation for each target cell. This
would be a more accurate way of identifying the most stable
cells.

C. Environmental Analysis

In order to assess the effectiveness of environmental
conditions in finding the most stable cells, this method
considers the stability of a target cell using neighborhood
data when only a pair of isolated fresh SRAM conditions
are used for enrollment. We define the environmental total
neighborhood based probability as

Cen = (P(A,B))/(P(B;ci,c2)) 4

Here event A remains unchanged with all conditions (for
fresh or aged data) being used to determine target cell
stability. Conversely, event B examines all of the neighbors
in w using only a pair of temperature and voltage conditions
(label as ¢ and ¢3) and for fresh data only. For example, ¢
could be the high temperature, high voltage (HTHV) corner.
While the definition of cgy could be expanded to include
any number of conditions, we shall only focus on choosing
two conditions at a time to keep enrollment costs low.
The time and cost of enrollment is directly related to the
number of measurements taken from the PUF. The analysis
of all of the possible pairs of condition combinations will
demonstrate which condition pairs have the most inter-cell
dependency and imply which enrollment tests can be most
effectively extrapolated to determine the SRAM cells that
are 'most stable’ over time.

IV. RESULTS AND ANALYSIS
A. Experimental Setup

Our results are based upon experiments conducted using
the 1IMB on-board SRAM of the Xilinx Spartan-3 FPGA
board. The on-board SRAM provided a proper environment
for the implementation of SRAM PUF, with the FPGA
reading the SRAM and sending the data to a computer to be
recorded. The various temperature and voltage conditions
were achieved using a Thermostream system and power
supply respectively.

Table I shows a list of the environmental conditions next
to the abbreviations which will be used throughout the
rest of this paper. Extensive burn-in was performed on the
SRAM to create an accelerated aging process. We recorded
results after 15 hours of accelerated aging to capture the cell
stability at different times.

10 trials were performed at each of the 10 tempera-
ture/voltage combinations for each age (fresh and aged 15
hours). Each trial results in 4,194,304 bits of data being
measured. For all the trials, conditions, etc. for which we

Table I: Temperature/Voltage Conditions versus Abbrevia-
tions Used.

Condition Abbreviation

High Temperature HT

High Temperature High Voltage HTHV

High Temperature Low Voltage HILV
High Voltage HV
Low Temperature LT

Low Temperature High Voltage LTHV

Low Temperature Low Voltage LTIV
Low Voltage LV
‘Nominal Conditions (Set 1) N1
N I Conditions (Set 2) NZ

took measurements, this resulted in over 1 billion samples
for computing conditional probabilities. Such an extensive
data set allows for a full exploration of the entire SRAM
and overall dependability in the results of the analysis.

Using the dependency relationship demonstrated by con-
ditional probability, we were able to analyze the interactions
of SRAM cells in 1D under the wide variety of conditions
outlined earlier (voltages, temperatures, and aging). We
performed the following experiments:

« Initial results used total neighborhood analysis (Cy)
to determine the dependency of the target cell on its
neighbors at various window sizes around a target
cell for 1 <t <w (integer values only). Note, that
the threshold can never exceed the window size. All
temperature and voltage conditions were used for the
fresh and aged 15 hours SRAM data sets to note the
reliability of window size and threshold combinations
as an SRAM ages. The conditional probability Cy for
each combination of window sizes and thresholds was
plotted individually for each aging condition examined
(fresh, aged 2 hours, and aged 15 hours).

o Next, we wanted to highlight cells with the most
influence on the target cell by using the more targeted
approach of neighborhood pairs analysis (Cyp). In this
scenario ¢t = 2 for all window sizes tested. The range
of tested window sizes was 1 < w < 4096 (even values
only). Conditional probability Cyp was plotted against
window size and only fresh data was examined using
this approach.

« Finally, environmental analysis Cgy was used to de-
termine the effects of specific pairs of conditions on
conditional probability in fresh data only. There were
10 available temperature/voltage environments, which
would combine to 45 potential pairs, each with 7
evaluated window sizes w = 2,4,8,16,24,32, 40.

B. Results and Discussion

The results below include the outcomes of all three
experiments discussed above.
Total neighborhood analysis : As Fig. 4 demonstrates, the
highest conditional probability (i.c. dependency of the target
upon its neighborhood) varies for different combinations
of window sizes and threshold values. For smaller window
sizes, such as 2 through 24, the optimal threshold is equal
to the window size. As the window size gets larger, this
relationship alters. For these conditions, there is a peak
conditional probability located at t = w. For larger window
sizes (32 and 40), the conditional probability is mainly fixed
until around ¢ = 25 and 7 = 30 respectively. One possible
explanation for this peculiar behavior at larger window
sizes could be due to the number of samples. Although we

1 T
—— W2
» —0— WS4
09t -+ wss H
4 ~ w16
¢ ’ - - - Wsu
09 ! 7 Wws3z [
+ - —¥— w40
. -

J-oss -
o8- e
st y

07 1 1 1 1 1 1 1
0 s 10 15 25 30 s 4

20
Threshold Values

Figure 4: Total Neighborhood Analysis for Fresh Data.

—— WS2
0 WS4
—— W58
095 WS16
5 WS
w532
0 v ws40

08s -

08

075

L 1 L 1 1 L
0 s 10 15 20 25 3 35 4@
Threshold Values

Figure 5: Total Neighborhood Analysis for Aged 15 Hour
Data.

examined a very large data set of over 15 million data points
for each window size, we may not have enough samples
where target cells are surrounded by 32 or 40 stable cells to
draw a significant conclusion. Another thing missing from
total neighborhood analysis is the impact of each cell in
the neighborhood on the reliability of the target cell. This
is covered by neighborhood pairs analysis below.

For SRAMs aged 15 hours SRAMs (Fig. 5), the trends
for the conditional probability are similar to that of the fresh
data (Fig. 4), but the conditional probability is higher. This
makes intuitive sense. For fresh data, we may call some
cells as stable that are not the most stable. After aging,
these less stable cells may change value. Such cells would
not be included to compute the conditional probabilities for
aged data shown in Fig. 5.

Neighborhood pairs analysis : The plot in Fig. 6 demon-

60 80
‘Window Size

Figure 6: Neighborhood Pairs Analysis for Window Sizes
2-128.

Table II: Total Neighborhood Analysis at different operating conditions

Condition Pairs Maximum Conditional Probablity at Each Window Size Statistics

Condition 1 Condition 2 2 4 8 16 24 32 40 Average Max
HTHV LT 0.8940 | 0.9183 | 0.9475 0.9631 0.9355 | 0.8630 | 0.8630 0.9121 0.9631
HTHV LTHV 0.8939 | 0.9180 | 0.9472 0.9628 0.9355 | 0.8630 | 0.8630 0.9119 0.9628
HTHV LTLV 0.8935 | 09174 | 0.9465 0.9621 0.9349 | 0.8630 | 0.8630 09115 0.9621
HTHV N2 0.8927 | 0.9161 0.9446 0.9603 0.9330 | 0.8630 | 0.8630 0.9104 0.9603
HTHV LV 0.8922 | 0.9153 | 0.9438 0.9592 0.9320 | 0.8630 | 0.8630 0.9098 0.9592
HTHV N1 0.8923 | 0.9153 | 0.9437 0.9592 0.9320 | 0.8630 | 0.8630 0.9098 0.9592
HTHV HV 0.8921 | 0.9150 | 0.9433 0.9588 0.9314 | 0.8630 | 0.8630 0.9095 0.9588
HTLV LT 0.8918 | 0.9147 | 0.9429 0.9584 0.9312 | 0.8630 | 0.8630 0.9093 0.9584
HTLV LTHV 0.8916 | 0.9143 | 0.9424 0.9579 0.9308 | 0.8630 | 0.8630 0.9090 0.9579
HTLV LTLV 0.8912 | 09136 | 0.9415 0.9569 0.9298 | 0.8630 | 0.8630 0.9084 0.9569
HTHV HTLV 0.8909 | 0.9131 | 0.9409 0.9563 0.9292 | 0.8630 | 0.8630 0.9081 0.9563
HT LT 0.8906 | 0.9127 | 0.9403 0.9558 0.9285 | 0.8630 | 0.8630 0.9077 0.9558
HT HTHV 0.8904 | 09122 | 0.9398 0.9552 0.9282 | 0.8630 | 0.8630 0.9074 0.9552
HT LTHV 0.8904 | 0.9123 | 0.9398 0.9552 0.9281 0.8630 | 0.8630 0.9074 0.9552
HTLV N2 0.8903 | 0.9120 | 0.9394 0.9547 0.9280 | 0.8630 | 0.8630 0.9072 0.9547
HT LTLV 0.8900 | 09115 | 0.9388 0.9541 0.9271 | 0.8630 | 0.8630 0.9068 0.9541
HTLV N1 0.8898 | 09112 | 0.9383 0.9537 0.9247 | 0.8630 | 0.8630 0.9062 0.9537
HTLV LV 0.8895 | 0.9108 | 0.9377 0.9529 0.9264 | 0.8630 | 0.8630 0.9062 0.9529
HTLV HV 0.8894 | 0.9105 | 0.9374 0.9527 0.9263 | 0.8630 | 0.8630 0.9060 0.9527
HT N2 0.8892 | 0.9103 | 0.9371 0.9524 0.9255 | 0.8630 | 0.8630 0.9058 0.9524
HT N1 0.8887 | 0.9095 | 0.9359 0.9511 0.9245 | 0.8630 | 0.8630 0.9051 0.9511
HT HV 0.8880 | 0.9081 | 0.9342 0.9492 0.9228 | 0.8630 | 0.8630 0.9040 0.9492
HT HTLV 0.8878 | 0.9079 | 0.9339 0.9490 0.9231 0.8630 | 0.8630 0.9040 0.9490
HT LV 0.8810 | 0.9083 | 0.9344 0.9494 0.9232 | 0.8630 | 0.8630 0.9032 0.9494
LT N2 0.8872 | 0.9070 | 0.9325 0.9472 0.9216 | 0.8630 | 0.8630 0.9031 0.9472
LTHV N2 0.8869 | 0.9064 | 0.9317 0.9467 0.9215 | 0.8630 | 0.8630 0.9027 0.9467
LT N1 0.8868 | 0.9062 | 0.9315 0.9462 0.9207 | 0.8630 | 0.8630 0.9025 0.9462
LTHV N1 0.8866 | 0.9057 | 0.9308 0.9457 0.9207 | 0.8630 | 0.8630 0.9022 0.9457
LTLV N2 0.8864 | 0.9056 | 0.9306 0.9453 0.9204 | 0.8630 | 0.8630 0.9020 0.9453
LT LV 0.8862 | 0.9053 | 0.9302 0.9446 0.9197 | 0.8630 | 0.8630 0.9017 0.9446
HV LT 0.8862 | 0.9052 | 0.9300 0.9445 0.9193 | 0.8630 | 0.8630 0.9016 0.9445
LTLV N1 0.8861 | 0.9049 | 0.9296 0.9442 0.9193 | 0.8630 | 0.8630 0.9014 0.9442
LTHV LV 0.8859 | 0.9046 | 0.9293 0.9439 0.9195 | 0.8630 | 0.8630 0.9013 0.9439
HV LTHV 0.8859 | 0.9045 | 0.9291 0.9436 0.9186 | 0.8630 | 0.8630 0.9011 0.9436
LV N2 0.8854 | 0.9037 | 0.9280 0.9424 0.9181 0.8630 | 0.8630 0.9005 0.9424
HV N2 0.8853 | 0.9037 | 0.9279 0.9424 0.9176 | 0.8630 | 0.8630 0.9004 0.9424
LTLV LV 0.8853 | 0.9036 | 0.9279 0.9421 09178 | 0.8630 | 0.8630 0.9004 0.9421
HV LTLV 0.8853 | 0.9036 | 0.9279 0.9421 0.9173 | 0.8630 | 0.8630 0.9003 0.9421
LT LTHV 0.8852 | 0.9035 | 0.9278 0.9420 09174 | 0.8630 | 0.8630 0.9003 0.9420
N1 N2 0.8851 | 0.9031 | 0.9271 0.9416 0.9173 | 0.8630 | 0.8630 0.9000 0.9416
LV NI 0.8850 | 0.9031 0.9271 0.9414 09173 | 0.8630 | 0.8630 0.9000 0.9414
HV N1 0.8850 | 0.9030 | 0.9271 0.9413 09170 | 0.8630 | 0.8630 0.8999 0.9413
LT LTLV 0.8848 | 0.9028 | 0.9268 0.9409 09164 | 0.8630 | 0.8630 0.8997 0.9409
HV LV 0.8835 | 0.9006 | 0.9235 0.9371 09137 | 0.8630 | 0.8630 0.8978 0.9371
LTHV LTLV 0.8843 | 0.9018 | 0.9253 0.9294 0.9155 | 0.8630 | 0.8630 0.8975 0.9294
Average 0.8882 | 0.90838 | 0.9350 | 0.94977 | 0.9240 0.863 0.863 0.9045 0.9497
Maximum 0.894 09183 | 0.9475 0.9631 0.9355 0.863 0.863 0.9121 0.9631

strates the dependency of each neighbor on the target cells
reliability. The peaks of the plot show the locations (in
terms of window sizes) which have the most influence
on the target. Surprisingly, these peaks occur at regular
intervals of 32. We believe that this is a direct indication
of the physical location of the individual cells in relation to
one another. Although the cells may be read out in an order
where they appear adjacent (assuming 1D), in actuality they
may be located in a completely different arrangement. For
instance, the peaks in conditional probability at intervals

of 32 cells could demonstrate that cells at such a dis-
tance in the SRAM read-out are located closer to each
other physically. This provides further motivation for multi-
dimensional analysis, as some cells which appear close in
the 1D SRAM data (i.e. 16 cells away from the target cell)
may not actually be located close to the target cell and
therefore do not have a profound impact on its power-up
state and stability.

Environmental analysis : Table II contains a list of each
of the pairs of tested enrollment conditions, arranged in

descending order of conditional probability. The last two
columns (rows) indicate the average and maximum condi-
tional probability for each row (column). The maximum
conditional probability can be seen for the combination
HTHV and LT (located at the top of the list). The critical
conditions (used in our previous work [10]) appear high
on this list (tenth); demonstrating the usefulness of using
these conditions to identify cells based upon the results of
our metrics. In general, high temperature as condition 1 and
either high temperature, nominal temperature, or low tem-
perature at condition 2 works very well for enrollment. At
the bottom of the table, we see that use of low temperature
as condition 1 and nominal or low temperature for condition
2 works poorly. This makes intuitive sense because SRAMs
are known to be affected by thermal noise which increases
with temperature. Hence, using high temperature as part
of enrollment ensures that we will be able to identify the
most stable bits since less stable ones should flip at high
temperatures.

Table II also illustrates the impact of different window
sizes at different enrollment conditions. The conditional
probability appears much more dependent upon window
size w as opposed to the specific environmental conditions
used in the isolated pair. This is an interesting and unex-
pected result. From the last two rows it can be observed
that the best window size is w = 16 (similar to Fig 6). For
w =2 and w = 40, there is a decrease of 7.14% and 10.4%
compared to w = 16. This is a much larger decrease than
from best (HTHYV, LT) to worst (LTHV, LTLV) enrollment
conditions, which is clearly visible in the last two columns
of Table II).

C. Summary of Results

Overall, we draw three main conclusions from these
results for our SRAM:

« The optimal combination of window size and threshold
value is not necessarily at the point where w =¢. Only
for small window sizes does w =t works best.

« The most influential neighborhood cells for our SRAM
appear to be the cells at distances every 32 bits from
the target cell (in 1D). These are likely to be the ones
physically located near the target cells in the actual
layout.

o Certain pairs of environmental conditions demonstrate
higher dependency of the target cell upon its neighbors.
Generally, it is better to use high temperature as one
of the enrollment conditions.

¢ The choice of window size w is more important for
bit selection than enrollment condition.

V. CONCLUSION

In this paper, we investigated three metrics for analyzing
the outputs of SRAM (assuming 1D). Our result showed
that the optimal threshold value does not necessarily equal
the window size. We also noticed that certain cells set at
specific distances from the target cell are more heavily
influential than other neighbors within a window. These
results lead us to believe that there is much to gain from
2D analysis of SRAM outputs in the future. We also
hope to expand our work to consider different SRAM
manufacturers (Intel, AMD, etc.) and to develop better
bit selection algorithms. Additionally, the process of bit
selection and the usage of proposed metrics can be used
to develop algorithms that identify the most unstable cells
which are optimal for TRNGs.

VI. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (NSF) under grant 1359329 and by the NSF and
the Semiconductor Research Corporation (SRC) STARSS
program under grant CNS 1441750.

REFERENCES
[1] C. Gorman, “ chips on the rise. Spectrum,” IEEE 49(6):16-7,
2012.

[2] Md. Tauhidur Rahman et al., “CSST: Preventing Distribution
of Unlicensed and Rejected ICs by Untrusted Foundry and
Assembly,” In IEEE Int. Symposium on Defect and Fault
Tolerance Symposium (DFTS), 2014.

[3] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hard-
ware Security: Models, Methods, and Metrics,” Proceedings
of the IEEE, vol. 102, no. 8, pp. 1283-1295, 2014.

[4] G. Contreras, Md. T. Rahman, and M. Tehranipoor, “Secure
Split-Test for Preventing IC Piracy by Untrusted Foundry and
Assembly,” in Int. Symposium on Defect and Fault Tolerance
in VLSI Systems (DFT), 2013.

[5] B. Gassend et al., “Silicon physical random functions,” in
Proceedings of the 9th ACM conference on Computer and
communications security, pp. 148-160, 2002.

[6] B. Habib, K. Gaj, and J. Kaps, “FPGA PUF based on pro-
grammable LUT delays,” Euromicro Conference on Digital
system design (DSD), pp. 697, 2013.

[7] D. Holcomb, W. Burleson and K. Fu, “Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random
Numbers,” IEEE Transactions on Computer, 2009.

[8] Y. Su, J. Holleman, and B.P. Otis, “A Digital 1.6pJ/Bit
Chip Identification Circuit Using Process Variations,” IEEE
J. Solid-State Circuits, vol. 43, no. 1, pp. 69-77, 2008.

[9] M. Yu, and S. Devadas, “Secure and Robust Error Correction
for Physical Unclonable Functions,” IEEE Design & Test of
Computers, vol.27, no.1, pp.48-65, 2010.

[10] Kan Xiao et al., “Bit selection algorithm suitable for high-
volume production of SRAM-PUE,” IEEE Int. Symp. on
Hardware-Oriented Security and Trust, pp. 101, 2014.

[11] S. Eiroa et al., “Reducing bit flipping problems in SRAM
physical unclonable functions for chip identification,” 19th
IEEE Int. Conf. on Electronics, Circuits and Systems
(ICECS), pp. 392-395, 2012.

[12] R. Maes et al., “Physically Unclonable Functions: a Study on
the State of the Art and Future Research Directions,” Section
1. Towards Hardware-Intrinsic Security. Springer, 2010.

[13] M. Cortez et al., “Modeling SRAM start-up behavior for
physical unclonable functions,” IEEE international sympo-
sium on Defect and fault tolerance in VLSI and nanotech-
nology systems (DFT), 2012.

[14] Md. Tauhidur Rahman et al., “ARO-PUF: An Aging-
Resistant Ring-Oscillator PUF Design,” in proc. Design, Au-
tomation, and Test in Europe (DATE), 2014.

[15] D. Lim et al., “Extracting secret keys from integrated cir-
cuits,” IEEE Trans. VLSI Syst., vol. 13, no. 10, pp. 1200-
1205, 2005.

[16] Md. Tauhidur Rahman et al., “TI-TRNG: Technology Inde-
pendent True Random Number Generator,” Proceedings of the
The 51st Annual Design Automation Conference on Design
Automation Conference (DAC), pp. 179:1-179:6, 2014.

[17] M. Hiller et al., “Complementary IBS: Application specific
error correction for PUFs,” IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 1-6, 2012.

