
Joint Optimization of NCL PUF Using Frequency-based
Analysis and Evolutionary Algorithm

Rabin Yu Acharya and Domenic Forte
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

Email: rabin.acharya@ufl.edu and dforte@ece.ufl.edu

Abstract—Physically unclonable functions (PUFs) are hard-
ware security primitives which can be used for hardware au-
thentication and cryptographic key generation. The design of
PUFs involves configuring the design of existing cells within an
integrated circuit (IC) for PUF operation without impacting the
normal circuit operation. This makes the design of PUF circuit
very challenging especially for analog circuits as they have higher
number of design specifications to meet. Thus, the design of
PUFs has been explored mainly for digital circuits even though
analog ICs are one of the most highly counterfeited circuit types.
In this paper, we present a clear and straightforward design
methodology that includes automated frequency-based analysis
and evolutionary algorithm-based optimization to design a robust
and reliable PUF circuit suitable for both analog and digital
circuits. Specifically, we present the design of null conventional
logic gate based (NCL) PUF that exploits its startup charac-
teristics as a source of entropy. Our previous work explored a
delay matching based optimization for transistors of the NCL
PUF which was able to obtain a highly unique PUF with fair
reliability. In this work, we are able to obtain a more robust PUF
circuit with higher reliability across a wide range of temperature
(0◦C-120◦C) and supply voltage variations (of up to ±10%). We
also compare different evolutionary algorithm based techniques
to demonstrate the effectiveness of our proposed methodology.

Index Terms—Evolutionary algorithm, Frequency-based anal-
ysis, PUF, NCL, AI, Optimization.

I. INTRODUCTION

Physically unclonable functions (PUFs) are a type of hard-
ware security primitive which can be used to create an intrinsic
hardware authentication mechanism or generate unique keys
for cryptographic schemes. In the last decade or so, they
have emerged as the security primitive of choice because of
their ability to exploit uncontrollable randomness or process
variation present in every hardware device during integrated
circuit (IC) manufacturing. This capability makes them a low
overhead, volatile security primitive resilient against physical
(both invasive and non-invasive) attacks, side-channel attacks,
and software-based attacks [1], [2]. They have specifically
gained traction in the smartcard industry where PUFs are used
as a silicon fingerprint to create cryptographic keys that are
unique to each smartcard [3]. Over forty different PUFs have
been proposed to this day most of which are only applicable
for digital circuits [4]. A few PUFs are applicable and targeted
for analog ICs namely the metal resistance PUF [5], [6],oxide
rupture PUF [7], analog electronic PUF [8], [9], [10], Via
PUF [11], and our previous work the NCL ARES PUF [12].

For a circuit structure to function as a PUF, we require a
source of entropy or intrinsic randomness that can provide ran-
dom yet reliable output bits which are different from device-

to-device only because of manufacturing or process variations.
The PUFs described above use different sources of entropy or
PUF circuit architectures. The metal resistance PUFs described
in [5], [6] exploits the random mismatches in resistance of
metal vias across ICs. In oxide rupture PUF [7], a stress
voltage is applied intentionally in transistor pairs such that
the output bit is determined through the transistor whose oxide
breaks first. Analog PUFs leverage threshold voltage mismatch
between transistors in cascode current mirror [8], mismatch
between pairs of analog circuits proportional-to-absolute-
temperature (PTAT) in [9], and mismatch between transistors
in current-steering digital-to-analog converter (DAC) and ring
voltage-controlled oscillator (VCO) to create two different
entropy sources in [10]. Furthermore, the asynchronous reset
(ARES) PUF in [12] utilizes the startup characteristics of
null conventional logic (NCL) gates to generate output as a
result of the metastability induced through process variations.
In all of these PUFs depending on the application, different
cells within the IC are preselected during the design step for
PUF operation. This has become challenging over the years
as the size of ICs have shrunk drastically and that there are
only limited number of input/output (I/O) pins in an analog
IC. Furthermore, its difficult to meet both analog and PUF
specifications as analog circuits already have an higher number
of design specifications.

As mentioned above, one of the major challenges in design-
ing a PUF circuit is to meet the PUF specifications such as
uniformity and reliability. Uniformity is defined as the distri-
bution of 1s and 0s in the output array of the PUF. An even
distribution guarantees a strong security as it becomes difficult
to replicate or to predict such output. Similarly, reliability is
defined as the capability of a PUF circuit in repeating same
output values despite changes in environmental conditions
such as the supply voltage and the operating temperature [13].
In case of the most popular metastability-driven PUF (SRAM
PUF), the static noise margin (PSNM) metric is used to
determine the maximum noise startup value that the cell can
tolerate before its value flips. This essentially expresses how
reproducible and reliable the output of a SRAM PUF is [14].
However, PSNM is only applicable if there are identical
structures within the PUF circuit as in SRAM. Our previous
work, the design of ARES PUF, uses delay based metrics
instead to improve PUF quality in the face of asymmetric NCL
gates. Delay based analysis balances the strength of the two
inverters present inside the NCL cell such that only the process
variation affects the output. However to use this delay-based

metric, the NCL structure is modified such that each inverter
inside the cell can be analyzed individually [12]. In this paper,
we take the same NCL structure to design an asynchronous
PUF suitable for both analog and digital circuits. However,
our design methodology does not involve any modification
to the original circuit and uses a frequency analysis based
method instead of the delay-based analysis technique to size
the transistors of the NCL architecture. More specifically, our
contributions in this paper are summarized as follows:

• A design methodology using frequency-based analysis
that exploits the startup characteristics of NCL gates.

• An automated sizing method based on widely popular
evolutionary algorithms such as genetic algorithm (GA)
and NSGA-II [15] that uses the fitness function and
stopping criteria based on the frequency-based analysis
to optimize the NCL netlist for uniformity and reliability.

• Simulation in HSPICE for the typical Threshold 2 of 2
(TH22) NCL PUF with state-of-the-art commercial 65 nm
technology node that demonstrates better and robust
uniformity and reliability results compared to previous
technique [12]. This approach can easily be extended to
other NCL gates such as TH33, TH44, TH23, etc. which
will be the focus of our future work.

The remainder of the paper is divided as follows, Section II
provides background and preliminary information. Section III
describes the proposed design methodology. Section IV con-
tains simulation results, and Section V concludes the paper
with possible future works.

II. PRELIMINARIES

A. PUF Preliminaries

Silicon PUFs exploit the intrinsic device or manufacturing
variations of passive and active elements in an IC to create a
device-specific fingerprint. The output of a PUF is recorded
in the form of challenge-response pairs (CRPs) which are
generated by physically querying the PUF and computing
its response. Depending on the number of CRPs, PUFs can
be categorized either as (1) Strong PUFs which have an
exponential or a large number of CRPs and are generally
diffculy for the attacker to create a model to clone and
attack the PUF or as (2) Weak PUFs which have a small
number of CRPs. Strong PUFs are generally used as an
authentication mechanism while Weak PUFs are most suitable
for cryptographic key generation.

B. NCL and TH22 Gate Structure

NCL is a quasi delay-insensitive asynchronous logic first
introduced by Fant et. al in 1994 [16]. This system of logic
gates are symbolically complete and do not need a clock to
synchronize their inputs or outputs. NCL uses dual-rail logic
which results in three valid states for a gate with two inputs
A and B: NULL (A = 0, B = 0), DATA0 (A = 1, B = 0)
and DATA1 (A = 0, B = 1). These two signals are mutually
exclusive meaning that the last state where both rails are equal
to 1 is invalid. NCL gates can only be discrete threshold gates
and thus are typically referred to as Threshold (TH) M-of-N

Figure 1: Transistor level diagram of NCL TH22 PUF.

gates. There are a total of 27 different threshold gates that
constitute both combinational logic and storage elements with
four or fewer number of inputs. These gates have two distinct
characteristics: 1) threshold which implies that the output
transitions from NULL to DATA only if at least M-of-N input
conditions become DATA and vice-versa; and 2) hysteresis
which refers to the ability of the logic gate to retain its
output value once a specific number of the input signals are
established.

Fig. 1 shows a typical structure of a NCL TH22 gate
and TH22 PUF. It consists of four logic blocks, namely
the Go-to-NULL, Go-to-DATA, Hold-NULL, and Hold-DATA
where NULL and DATA comprise of the three valid states as
discussed above. As the name suggests, the Go-to blocks help
in switching the state of the output logic from 0 to 1 and
vice-versa while the Hold blocks help in retaining the state
of the output logic before or after the threshold is met. In
this regards, Go-to blocks are only activated when all of the
inputs within the block have the same logic value while the
hold blocks are activated until at least one of the input has a
different logic value compared to the others in the block. In
addition to these four blocks, the NCL structure also consists
of INV1 and INV2 as shown in the orange blocks of Fig. 1.
The transistors in INV1 are referred to as holding transistors
as they are essential in holding the output logic value while
the transistors in INV2 are referred to as switching transistors
since they help in switching the output logic value.

To use the NCL structure as a source of entropy or PUF, we
start the device in a metastable condition meaning that neither
the Go-to-NULL and Go-to-DATA blocks are activated. For
this purpose, we start the device with the inputs having
different value from each other (i.e., AB = 10, AB = 01).
Because of this, the node X in Fig. 1 is floating and the final
output of the circuit is completely dependent on the process
variations of transistors in the inverters. We leverage this to
design a PUF circuit by making sure that the inverters are
equal in strength and only manufacturing or process variation
tilts the strength in either inverter’s favor.

Figure 2: A typical negative-feedback system.

C. Frequency analysis of a feedback system

Fig. 2 shows a typical negative-feedback circuit with an
open-loop gain of |H(s)| and feedback of β. The input and
output of the system are represented as X(s) and Y (s) respec-
tively. The closed-loop transfer function of this system T (s),
the subsequent gain G and phase ϕ is given as follows.

T (s) =
Y (s)

X(s)
=

H(s)

1 + βH(s)

Gain,G = |T (s)|s=jω =
1√

(Re(T))2 + ω2(Im(T))2

Phase, ϕ = ∠ T (s)|s=jω = −tan−1

(
ωIm(T)

Re(T)

)
Based on the above equation of T (s), when βH(s) = −1 then
the closed-loop gain goes to infinity meaning that the system
can amplify its own noise until it oscillates. This means that for
the circuit to oscillate at a given frequency ω, β|H(s)|s=jω and
ϕ must be at least 1 and 180◦ respectively. These conditions
are also referred to as the Barkhausen’s criteria [17]. For the
NCL TH22 system that we analyse in this paper (Fig. 1), the
feedback β is unity and H(s) is the combined gain of the
two inverters. Based on the discussion above, we want the
combined gain to be greater than or equal to 1 and the phase
shift to be less than 180◦.

III. PROPOSED METHODOLOGY

The design of NCL TH22 PUF involves using the structure
described in Section II-B and shown in Fig. 1 and then
optimizing the value of the components (transistors and the
output capacitor) automatically to obtain a reliable source of
entropy needed for a successful PUF operation. The circuit
is the same as described in our previous work [12]; however,
the design methodology is completely different as discussed
below. In our previous work, we used a delay based metric
to obtain the appropriate sizes and values for the transistors
in the NCL circuit. More specifically, the transistor sizes are
obtained such that the delay of the rise and fall paths of the
inverters (INV1 and INV2) in Fig. 1 are equal in strength. For
this purpose, the feedback loop (OUT2 line that goes from
output of INV2 to the input of INV1) is disconnected, a clock
is then inserted at the input of INV1 and the corresponding
rise and fall times are recorded at OUT1. Similarly, OUT1 line
is disconnected, a clock is then inserted and the corresponding
rise/ fall times are recorded at OUT2. Then using either linear
programming or genetic algorithm, the transistors of the NCL
circuit are sized such that the recorded rise and fall times for
INV1 and INV2 are almost equal.

Figure 3: (a) General flow diagram of GA; Example showing (b)
population initialization; (c) selection of fit members based on the
fitness value; (d) crossover between fit members to create new
members; (e) mutation of genes in certain members to create new
members; (f) the new population after selection, crossover, and
mutation.

In this paper, we instead use a frequency analysis based
metric to help size the transistors of the NCL PUF circuit. For
this purpose, we do not make any modification to the circuit
nor disconnect any wires. Instead we only insert small signal
AC source at the inputs of the circuit to be able to obtain a
frequency response of the circuit.

A. Genetic Algorithm (GA) Basics

GA is a type of an evolutionary algorithm which is used
to generate highly fit solutions to optimization and search
problems. Inspired by Charles Darwin’s theory of natural
section, GA relies on three operators – selection, crossover,
and mutation – to generate the “fittest” individual or the best
solution to a given problem. These three operators are applied
to a population of genomes or potential solutions as shown in
Fig. 3. As an example, Fig. 3b shows the initial population
of 4 genomes where each genome consists of genes or width
values for transistors in a particular netlist. Then based on the
value calculated using the fitness function, fit individuals or
best genomes are selected as shown in Fig. 3c. Using these fit
individuals, new genomes are created by crossing over some
genes or width values between genomes as shown in Fig. 3d.
New genomes are also created by mutating or changing values
of some genes as seen in Fig. 3e. The new population as
a result of these three operators are shown in Fig. 3f. This
process of evolution or application of evolutionary operators
continues until a stopping criteria is satisfied. The stopping
criteria can either be an optimal fitness value or a number of
evolutionary runs. In any case, the GA returns the most fit
genome that solves the problem at hand.

1) Advantages of GA: GAs are used in various applications
that involve solving complex problems such as machine learn-
ing, automatic programming, data modeling, and even NP-hard
problems (i.e., problems that are non-deterministic and take
longer than polynomial time to solve). They are proven to
be way more effective to find a global optimum compared
to the traditional optimization methods like hill-climbing and
gradient-ascent based methods, and exhaustive random search
methods [18]. Unlike these methods, GAs are not random

and they do not require extra information like gradients or
derivatives. As described above, the only mechanism that
guides them is the fitness function along with the stopping
criteria. This allows them to function when the search space is
noisy, nonlinear, and where derivatives do not exist. However,
the fitness function and stopping criteria must be carefully
devised to solve any given problem.

2) Formulation of the fitness function: The GA described
in Fig. 3 shows a basic evolutionary algorithm that can
handle single objective or fitness function smoothly. When we
specify multiple objectives, then depending on the problem,
the algorithm above might not operate as intended. Instead,
a unified fitness function with weights to different objectives
must be devised or some advanced algorithms that can handle
multiple objectives must be used. Indeed, we explore both of
these techniques in this paper to design a NCL-based PUF
which is both uniform and reliable across different challenges
and ICs. The unified fitness function is used in conjunction
with the algorithm described in Fig. 3. The unified fitness
function is shown in Equation 1 below where M represents the
total number of objectives, wm represents the weight for each
objective m and fm represents a specific objective function.

F (x) =

M∑
m=1

wmfm(x) (1)

Similarly, regarding the advanced algorithm, we use Non-
dominated Sorting Genetic Algorithm (NSGA-II) which is
one of the most popular genetic algorithm to tackle multiple
objective-based optimization problems [15].

B. NSGA-II

NSGA-II is similar to the algorithm described in Fig. 3.
However, the algorithm consists of two additional opera-
tors and mechanisms designed specifically for multi-objective
optimization: non-dominated sorting and crowding distance,
cf. [15]. Non-dominated sorting is a mechanism where the
population of genomes or potential solutions are sorted and
partitioned into fronts according to the ascending level of non-
domination. The level of non-domination is determined based
on how well a specific solution provides a suitable compromise
between all objectives without degrading any of them. The
non-dominated set of solutions of the entire search space is
also referred to as globally Pareto-optimal set [19]. Similarly,
crowding distance is the new parameter calculated by the
algorithm to measure the distance between each genome and
its neighbors. A large average crowding distance is desired as it
results in better diversity and helps in evolving a wide-range of
potential solutions potentially leading to quicker convergence.
The selection process in this algorithm is based on both fitness
function and crowding distance.

C. Methodology to Design NCL TH22 PUF

The design procedure involves evolving the widths of all
the transistors in the NCL circuit (Fig. 1) such that the PUF
is uniform and reliable across both the challenges (Challenge
1: AB = 10, and Challenge 2: AB = 01). The widths of

the NMOS transistors are referred to as WN where WN =
(WN1,WN2,WN3,WN4) represents the widths of the NMOS
transistors of INV1, INV2, Hold DATA, and Goto DATA
networks respectively. The widths of the PMOS transistors,
WP , can also be evolved but for the sake of simplicity we
will use WP = 2.5 × WN . Note that the factor of 2.5 is
based on the fact that the mobility of electrons is at least
twice as high as compared to that of the holes. The detailed
design methodology using the GA algorithm described in
Section III-A is as follows.

1) For the NCL circuit (Fig. 1) with a given set of WN and
WP , a small signal AC source is inserted at the inputs
A and B. The input challenges or the DC values of A
and B are set to 1 and 0 and vice-versa representing
Challenges 1 and 2, respectively. One thing to note is
that since we keep the values of the transistors within a
block equal (for example, the transistors in Hold DATA
block have same width values), the circuit is not that
different across the two challenges.

2) The corresponding frequency response (Gain and Phase
margin) is then recorded at OUT1 and OUT2. We
require the Gain (G) of the inverters to be equal to each
other to ensure that both of the inverters are equal in
strength. Similarly, the combined phase margin of the
inverters (ϕm) is expected to be between 90 and 180
degrees to ensure that the circuit does not oscillate based
on the Barkhausen’s criteria [17]. For simplicity, we set
the criteria of the Gain of the inverters to be equal to 1
or 0dB.

3) We then use the weighted sum technique as shown
in Equation 1 to devise a unified fitness function for
our evolutionary algorithm such that M = 2 and the
objective functions are the Gain of the two inverters. We
set the value of the weights (wm) to be equal to each
other i.e. 0.5. The resulting equation is shown below.
The algorithm as shown in Fig. 3 continues until the
fitness value satisfies the criteria described above. This
fitness function ensures that the output of the PUF is
uniform and is only determined by the process variation.

F = (0.5×GINV 1) + (0.5×GINV 2) (2)

4) Once the fitness value is satisfied, we are then ready
to stop the algorithm as part of our stopping criteria.
In addition to checking if the fitness value is satisfied,
we can also add an additional criteria to ensure that the
difference of currents (Idiff) through INV1 and INV2 is
as minimal as possible. This modified stopping criteria
makes sure that the output of the circuit is affected
minimally with changing environmental conditions such
that the PUF is reliable.

The above methodology uses the evolutionary algorithm de-
scribed in Section III-A to evolve the transistor sizes of
the NCL PUF circuit until it produces uniform and reliable
outputs. We also use the NSGA-II algorithm described in
Section III-B in a similar fashion as explained above where the
multi-objective function comprises of the two fitness functions,

Figure 4: Simulation procedure used to obtain a set of widths for
the NCL PUF.

namely the Gain of the two inverters INV1 and INV2.

IV. SIMULATION RESULTS AND ANALYSIS

A. Simulation Setup

The netlist shown in Fig. 1 is simulated in 65 nm technol-
ogy node using HSPICE. The creation of netlist, subsequent
HSPICE simulations, and the evolution of the transistor sizes
are all done in an automated fashion within the Python envi-
ronment as shown in Fig. 4. We implement our own version
of GA as shown in Fig. 3, while we use the code developed
by Pymoo [20] to implement the NSGA-II algorithm. The
parameters related to the GA algorithm such as the number of
iterations, crossover rate, mutation rate, number of genomes
in a population are set to the standard values of 100, 0.35,
0.1, and 10 respectively.

B. Simulation Procedure

The design methodology described in Section III is used
to get a list of transistor sizes such that the subsequent NCL
TH22 PUF circuit produces uniform and reliable outputs. For
this purpose, we insert small AC signals of 1mV and 10kHz
frequency at the inputs and set the supply voltage VDD at 1V .
The value of the output load capacitor of the NCL PUF circuit,
CL, is set dynamically based on the capacitances seen by the
inputs A and B. The corresponding gain and phase margin of
the inverters are measured across the frequency range of 0Hz
to 10kHz. Then with the evolutionary algorithms, a netlist
with a specific set of WN and WP that satisfies the fitness
criteria of the combined gain, G = 0dB and phase margin
of 90◦ < ϕm < 180◦ is found. The algorithms run until
we wish to continue it to optimize for reliability using the
modified stopping criteria discussed in Section III which is set
to be 0.3mA. If the difference in current through the inverters
(Idiff) is less than 0.3mA, then the changes in environmental
conditions such as supply voltage and temperature will affect
the output value of the PUF minimally as will be shown in
the results below.

After a netlist is returned using the evolutionary algorithm,
we set the supply voltage VDD as a piece-wise linear (PWL)
voltage function that increases linearly from 0V to 1V in a
very short span of time (10fs) and stabilizes at 1V for some
time (1ns). This simulates the startup behavior as discussed in
Section II-B. We then run 1000 Monte Carlo (MC) simulations
to mimic different instances of the NCL PUF chip. The MC
simulation constitutes of a 5% intra-die process variation and
15% inter-die process variation. This variation is obtained from

TABLE I: Comparison of the uniformity results using different
optimization methods and metrics.

Optimization method Uniformity
GA using delay-based metric 51.3 %

GA using frequency-based metric 50.6 %
NSGA-II using frequency-based metric 50.8 %

Figure 5: Reliability results of the NCL TH22 PUF across different
supply voltage variations.

the MC library provided by the particular process foundry. The
MC simulations carried out are different transient simulations
which help us obtain a transient output at node Z. This
transient output is then quantified to either a logic 0 or a logic 1
based on the threshold value of 0.5. The maximum transient
value after the output is settled, which is usually after 10fs in
our case, is used to get the transient output. The subsequent
1000 outputs are then analyzed to calculate the distribution of
logic 1s and 0s.

C. Uniformity Results

Based on the 1000 outputs obtained from the transient
MC simulations, the percentage distribution of zeros or ones
(0s in our case) is used to calculate the Uniformity value.
We perform the procedure mentioned above using the GA
algorithm described in Section III-A and compare it with the
results when using a similar procedure but with a delay-based
metric as described in [12]. We also compare these results
when using the same procedure mentioned above but using
the NSGA-II algorithm instead. These results and comparison
are summarized in Table I where the uniformity results are
very comparable to each other. More specifically, the results
are seen to be better when using the frequency-based metric.

D. Reliability Results

Using the same netlist that produced the 1000 transient out-
puts described above, we test the reliability of that circuit by
running the transient MC simulations across different supply
voltages and temperatures. In this regard, we consider the
supply voltage variations of up to ±10% and the temperatures
ranging from 0◦C to 120◦C. Then, we check and see how each
voltage bit changes as a result of the change in environmental
conditions (supply voltage and temperature). The percentage
number of bits that do not flip its original logical state is

Figure 6: Reliability results of the NCL TH22 PUF across different
temperatures.

used as the reliability value. For comparison, we also compile
these results using the GA with the delay-based metric and
the NSGA-II algorithm with the frequency-based metric. The
reliability results across voltage variations and temperature
variations are summarized in Fig. 5 and Fig. 6, respectively.
The frequency-based analysis produces better reliability with
respect to both voltage and temperature compared to delay-
based analysis. Another thing to note is that the results for the
frequency-based metric were obtained using the evolutionary
algorithm with the modified fitness criteria. Without this
criteria, it is not guaranteed whether the netlist produced by
the algorithm will be reliable or not. In fact, the results for
the delay-based metric were obtained after a few number of
GA runs and manual checks as the initially generated netlists
produced very unreliable output bits.

Furthermore, looking at the reliability results in Figures 5
and 6, it might not be clear as to why a sophisticated multi-
objective optimization algorithm such as NSGA-II needs to be
implemented since the results are very comparable. One reason
is to compare the performance of our version of the GA to the
state-of-the-art evolutionary algorithm. The second reason is
because NSGA-II is very fast (around 3 times) in converging to
a uniform and reliable PUF when compared to the simple GA
that we devised. It is the case that NSGA-II can handle multi-
objective optimization functions really well; however, we hope
that it can successfully help design complicated NCL circuits
such as the TH44, TH32, etc. with similar ease which will be
the focus of our future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated a novel design methodology
to design a uniform and reliable NCL TH22 PUF using
the frequency analysis based metric and the evolutionary
algorithm. We also introduced a modified stopping criteria to
help ensure that the PUF netlist generated by the algorithm
produces highly reliable bits. In this regards, we generated a
PUF netlist which is 50.6% uniform and on average 96.2%
and 95.6% reliable across supply voltage variations of ±10%
and temperatures ranging from 0◦C-120◦C, respectively. In
the future, we plan to fabricate these netlists in Silicon. We

will also extend the design methodology of using both of
the evolutionary algorithms discussed to design more complex
NCL circuits such as the TH44, TH32, etc.

REFERENCES

[1] N. Beckmann and M. Potkonjak, “Hardware-based public-key cryp-
tography with public physically unclonable functions,” in International
Workshop on Information Hiding, pp. 206–220, Springer, 2009.

[2] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 148–160, 2002.

[3] V. van der Leest, R. Maes, G.-J. Schrijen, and P. Tuyls, “Hardware
intrinsic security to protect value in the mobile market,” in ISSE 2014
Securing Electronic Business Processes, pp. 188–198, Springer, 2014.

[4] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, “A
puf taxonomy,” Applied Physics Reviews, vol. 6, no. 1, p. 011303, 2019.

[5] R. Helinski, D. Acharyya, and J. Plusquellic, “A physical unclonable
function defined using power distribution system equivalent resistance
variations,” in 2009 46th ACM/IEEE Design Automation Conference,
pp. 676–681, 2009.

[6] B. Park, D. Forte, M. M. Tehranipoor, and N. Maghari, “A metal-via
resistance based physically unclonable function with backend incremen-
tal adc,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 11, pp. 4700–4709, 2021.

[7] M.-Y. Wu, T.-H. Yang, L.-C. Chen, C.-C. Lin, H.-C. Hu, F.-Y. Su, C.-M.
Wang, J. P.-H. Huang, H.-M. Chen, C. C.-H. Lu, et al., “A puf scheme
using competing oxide rupture with bit error rate approaching zero,”
in 2018 IEEE International Solid-State Circuits Conference-(ISSCC),
pp. 130–132, IEEE, 2018.

[8] A. Alvarez, W. Zhao, and M. Alioto, “14.3 15fj/b static physically
unclonable functions for secure chip identification with¡ 2% native bit
instability and 140× inter/intra puf hamming distance separation in
65nm,” in 2015 IEEE International Solid-State Circuits Conference-
(ISSCC) Digest of Technical Papers, pp. 1–3, IEEE, 2015.

[9] J. Li and M. Seok, “Ultra-compact and robust physically unclon-
able function based on voltage-compensated proportional-to-absolute-
temperature voltage generators,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 9, pp. 2192–2202, 2016.

[10] M. Danesh, A. B. Venkatasubramaniyan, G. Kapoor, N. Ramesh,
S. Sadasivuni, S. T. Chandrasekaran, and A. Sanyal, “Unified analog puf
and trng based on current-steering dac and vco,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, no. 11, pp. 2280–
2289, 2020.

[11] D. Jeon, J. H. Baek, Y.-D. Kim, J. Lee, D. K. Kim, and B.-D. Choi, “A
physical unclonable function with bit error rate < 2.3 × 10−8 based
on contact formation probability without error correction code,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 3, pp. 805–816, 2019.

[12] S. Chowdhury, R. Acharya, W. Boullion, A. Felder, M. Howard, J. Di,
and D. Forte, “A weak asynchronous reset (ares) puf using start-
up characteristics of null conventional logic gates,” in 2020 IEEE
International Test Conference (ITC), pp. 1–10, IEEE, 2020.

[13] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to
evaluate and compare the performance of physical unclonable functions,”
in Embedded systems design with FPGAs, pp. 245–267, Springer, 2013.

[14] M. Cortez, A. Dargar, S. Hamdioui, and G.-J. Schrijen, “Modeling
sram start-up behavior for physical unclonable functions,” in 2012 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pp. 1–6, IEEE, 2012.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[16] K. M. Fant and S. A. Brandt, “Null convention logic: A complete
and consistent logic for asynchronous digital circuit synthesis,” in Pro-
ceedings of International Conference on Application Specific Systems,
Architectures and Processors: ASAP ’96, 1996.

[17] V. Singh, “A note on determination of oscillation startup condition,”
Analog Integrated Circuits and Signal Processing, vol. 48, no. 3,
pp. 251–255, 2006.

[18] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms.
Springer Publishing Company, Incorporated, 1st ed., 2007.

[19] K. Deb, “Multi-objective optimization,” in Search methodologies,
pp. 403–449, Springer, 2014.

[20] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,”
IEEE Access, vol. 8, pp. 89497–89509, 2020.

