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Abstract—Cryptosystem implementations often leak informa-
tion about a secret key due to correlation with side channels
such as power, timing, EM, etc. Based on this principle, statisti-
cal and machine-learning-based side-channel attacks have been
investigated, most often using a single channel or modality such
as power; however, EM is growing in popularity. Since power
and EM channels can leak distinct information, the combination
of EM and power channels could increase side-channel attack
efficiency. In this paper, we combine EM and power channels
in a linear fashion by using mutual information to determine
the optimal coefficients for each feature. Mutual information
is also systematically applied for lightweight dimensionality
reduction. Further, the proposed methodology is implemented
onto a platform to simultaneously measure power and EM traces
and process them in real time to extract AES subkeys. With the
proposed dual channel approach, the success rate increases by at
least 30% compared to single power/EM channels in the offline
mode and over 50% in the real-time mode.

Index Terms—Side-channel attack, linear combination, RDCP,
real-time

I. INTRODUCTION

Modern cryptosystems are implemented using semiconduc-
tor logic gates, which are constructed out of transistors. These
silicon-based transistors generate electromagnetic (EM) radi-
ation and consume power when a voltage is applied between
their gate and substrate. Thus, EM and power vary based on
gate inputs or, in other words, the data being processed by
the silicon chip. Over the past 20 years, this phenomenon
has been exploited to non-invasively steal the secret keys of
cryptosystems in so-called side-channel attacks (SCAs) using
power [9]–[11] and EM [15], [16].

The power SCA was introduced in Paul Kocher’s seminal
paper [9]. Kocher et al. presented the differential power attack
(DPA) against the DES encryption module by utilizing the
power leakage collected during cryptographic operations. In
2004, Brier et al [12] proposed the correlation power attack
(CPA) approach which is based on the power Hamming
distance (HD) model. The CPA attack utilizes the positive
linear relationship between power consumption and HD to
find the correct secret key from all possible hypotheses.
The EM SCA originated in 2001 [15] where Gandolfi et
al. [15] successfully retrieved complete key materials from EM
leakage in a series of experiments on three different CMOS
chips. In [16], Agrawal et al. launched attacks such as simple
and differential electromagnetic attacks on straightforward
(unprotected) implementations of DES [40], RSA [34], and
COMP128 [35] on smart cards, cryptographic tokens, and SSL
accelerators. In [20], Hutter et al. reported the first EM attacks

on hardware as well as software implementations of AES
on RFID tag prototypes. In [21], DING et al. presented the
correlation electromagnetic attack (CEMA) on the P89C668
microcomputer.

Although the main principles and algorithms used for power
and EM-based side-channel attacks are the same, their perfor-
mance differs based on the cryptosystem’s implementation.
For example, some time samples (features) in the EM traces
could be used to extract sensitive information but those with
the same index from the power channel are useless in the
power side-channel attack, and vice versa. Besides fine-tuning
the hardware setup to improve signal-to-noise ratio (SNR),
another possible way to increase side-channel attack efficiency
is to take subkey-correlated features from both EM and power
channels [17], [19]. In such dual channel attacks, the combined
features contain more information than a single channel and,
therefore, increase the SCA success rate with fewer traces.
In [19], Standaert et al. concatenated EM and power traces
and developed the entropy method to quantify the SCA
efficiency. Their experiment shows less entropy is achieved
after concatenation to achieve a higher success rate. However,
the concatenation method expands the length of the traces,
requiring more processing resources. In [17], Souissi et.al try
to combine multiple channels by summing up the square of
each channel. A mathematical proof is provided to show the
improvement in SNR after combination. Compared with the
single power channel, this sum of squares method has larger
SNR, and the experiments demonstrate that fewer traces are
needed to attack the same SBox. However, the sum of the
square method only works for correlation-based SCAs, and
is not suitable for other algorithms, such as DPA or machine
learning. Further, it also takes more time to process traces
from two channels and lacks granularity in combination. That
is, as features at different time indexes share different SNRs,
their combination should be different. Besides the limitations
of inapplicability, resource efficiency, and granularity, the
methods in [17] and [19] need to be implemented in a lab.
The lack of real-time implementation limits their use for
intelligence gathering in the field.

In this paper, we present a mutual-information-based ap-
proach to create features for dual channel SCA. The high-
level diagram is presented in Figure 1. Just like previous
works [17] [19], we take both the power and EM features
into consideration. Compared with [17] and [19], our proposed
methodology focuses on both selection and the combination
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Fig. 1: High-level diagram of proposed methodology. In the feature selection phase, coefficients for combining EM and power
traces (red and blue, respectively) into a combined channel (black) during attacks are calculated using mutual information.
Further, mutual information also guides dimensionality reduction, making the proposed attacks realizable in real-time.

of features from both channels before implementing a SCA
algorithms and then adopts mutual information to quantify the
improvement after the combination. Since the combination of
power/EM features at different time indices utilizes different
coefficients, the proposed methodology offers higher granu-
larity than the others. More importantly, the feature selection
could save time and memory resources, allowing for real-time
implementation on a resource-limited device. Also, since the
proposed approach generates features before implementing the
SCA algorithm, the proposed methodology could be integrated
with any attack method, e.g., DPA [9] [10] [11], CPA [12]
[13], machine learning [38] [39], deep learning [36] [37], etc.
Besides, we present the attack capability by implementing the
proposed methodology in both offline and real-time modes. In
the offline mode, we adopt a traditional side-channel system
(oscilloscope and commercial EM probe) to collect traces and
attack the target Arduino UNO [32] board. In the real-time
mode, we implement the proposed methodology into a custom-
designed “real-time dual channel platform” (RDCP for short)
to extract the secret key in real-time. Our main contributions
are summarized as follows:

• We present a mathematical analysis to quantify the gains
made by combining EM and power channels and to identify
the optimal combination. The efficiency of the methodology
is also improved through lightweight dimensional reduction
where mutual information is utilized to select the best time
indices of the dual channel traces.

• The applicability of the proposed methodology is presented
by comparing the efficiency of multiple attacks. We utilize
our selected and combined features in differential attacks,
correlation attacks, and machine-learning attacks. Experi-
ments are performed to compare the success rates vs. the
number of traces for all 16 subkeys of an AES-128 module.
We also implement the dual channel approaches from [17],
[19] and show that the proposed approach significantly
outperforms them.

• The proposed methodology is successfully implemented into
RDCP for real-time processing. The approach scales with
number of traces by reusing memory for each trace. Even
though the measurements to disclosure (MTD) are worse
than the offline version, the results are promising and show
improvements over single channel scenarios.

The remainder of this paper is organized as follows. Sec-
tion II describes the related work and associated results.
Section III introduces the background of mutual information.
In Section IV, we present the proposed methodology, including
the dual channel feature selection and combination, training
template, and algorithms. The real-time implementations are
described in Section V. Section VI describes the experimental
setup, results, and discussion. We conclude and offer directions
for future work in the last section.

II. RELATED WORK

Mutual Information Analysis. In [14], Gierlichs et al. present
a generic differential SCA that is based on an information-
theoretic distinguisher. The distinguisher adopts the mutual
information between the observed measurements and the val-
ues of a hypothetical leakage function. Gierlichs calculates
the mutual information for different time indexes and finds
the obvious peaks in the plot during the jointly implemented
SubBytes and ShiftRows operations as well as during the
MixColumn operation of AES. In the experiments, SCA
efficiency was improved by selecting features that possess the
highest mutual information values.
EM-based Attacks. In [15], Gandolf et al. describe differen-
tial EM attacks (DEMA) conducted on three different CMOS
chips. Similar to DPA, the result for the DEMA also shows a
strong peak, which proves the efficiency of the differential
attack in the EM channel. In [16], Agrawal et al. provide
a systematic investigation of information leakage via EM
emanations from CMOS devices. It is shown that EM signals
capture leakage based on not only physical and electrical
characteristics but also emanations from other components due
to coupling and circuit geometry. The experiments show that
DEMA could focus on a small subsection of the EM trace to
extract subkeys while DPA could not.
Template Attacks. In [25], Archambeau et al. present the
template-based attack against an FPGA implementation of
AES Rijndael. The template attacks use the maximum like-
lihood principle to reveal the secret for a set of traces. Their
principal subspace based templates achieve average success
rates of 93.3% and 86.7% against RC4 and AES Rijndael,
respectively, In [26], Mohamed et al. propose a template-
based algebraic SCA. They reduce the information required
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TABLE I: Comparison of related work and proposed method. Legend: Power = P; MI = Mutual Information; DA = Differential
Attack; CA = Correlation Attack; TA = Template Attack; MLA = Machine Learning Attack; SR = Success Rate.

Non-profiling Attacks Profiling Attacks
[14] [15] [16] [17] [19] [22] [23] [25] [26] Proposed

Modality P EM EM EM & P EM & P P P P P EM & P
Method MI DA DA CA TA MLA MLA TA TA MI
Target

Algorithm AES-128 COMP128
DES

COMP128
DES DES N/A

(Bit transition) DES AES AES AES AES-128

Platform AT90S851 Smartcard Smartcard SASEBO PIC16F877 XCS3E500 ATmega163 PIC16F877 AMD8536 ArduinoUNO
Mode Offline Offline Offline Offline Offline Offline Offline Offline Offline Real-time

for solving the algebraic system by improving the algebraic
representation of AES as well as Hamming weight and conduct
a single-trace template attack against AES-128 encryption.
They were able to solve the algebraic system in a few
seconds and extract all subkeys using a template base of 5,000
measurements and 2,000 testing plaintext/key pairs.
Machine Learning (ML) Attacks. In [22], Lerman et al.
present a machine-learning procedure based on dimensionality
reduction and model selection to attack the byte of a secret
key. They first build classifiers using random forest (RF)
and support vector machines (SVMs) using secret bytes and
power traces from a DES cryptographic device. Then, they
try to predict one target bit of an RSA-512 private key. The
experiment result shows that the trained model could achieve
high accuracy towards the target bit but low accuracy (< 20%)
towards the entire byte for DES encryption. Nevertheless, this
method [22] still proved to be faster than template attacks
when only a few traces were available.

In [23], Lerman et al. build a ML classifier with power
traces and key-related information to attack masked AES
encryption modules. The proposed machine-learning attack
adopts SVM and RF algorithms, and the success rate could
reach 90% success rate with 1,500 traces in the learning set
(48 features per trace). However, the normal template and RF
attacks only achieved 80% and 70% success rate under the
same conditions.
Dual Channel Attacks. In [19], the authors present fair
information and security metrics to evaluate the EM and
power channels. Their analysis shows that the EM channel
has significantly higher information leakage. By concatenating
power and EM channels, the experimental results show the
conditional entropy of the concatenated trace could be dimin-
ished, which could be helpful to an adversary in recovering
cryptographic keys. In [17], the author first combines Pearson
and Spearman correlation coefficient distinguishers for SCA.
Then, EM and power traces were combined using the sum
over standard deviation method, which could increase the SNR
of the traces. With these combined traces, CPA efficiency
increased by 45%.

The related work is summarized and compared to the
proposed approach in Table I.

III. BACKGROUND AND PRELIMINARIES

A. Mutual Information
Mutual information is a quantity that measures the mutual

dependence between two random variables [5]. In the area
of SCAs, mutual information can be adopted to describe the

correlation between the features in side-channel traces and
secret information, such as a subkey in AES encryption. In
this paper, mutual information will be used to quantify the
relationship between features combined from power and EM
with a target subkey.

Assuming the feature is a discrete random variable X , and
the subkey value is a discrete random variable denoted as C,
the mutual information between X and C is given by

I(X,C) =
∑
x∈X

∑
c∈C

PX,C(x, c) log

(
PX,C(x, c)

PX(x)PC(c)

)
, (1)

where PX(x) and PC(c) is the the marginal probability mass
functions of random variable X and C. PX,C(x, c) is the joint
distribution and the marginal distributions are PX and PC .

B. Mutual Information and Entropy

Based on information theory, the mutual information in
Equation (1) could also be expressed in terms of entropy [5]:

I(X,C) = h(X)− h(X|C). (2)

Here, h(X) stands for the entropy of the target feature X , and
h(X|C) means the entropy of the target feature X when given
class label C. Considering the combination of EM and power
channels, one is likely to normalize all features from EM and
power channels into the range [0, 1]. Thus, the range of X is
limited to [0, 1] and its probability density function p obeys
the Gaussian distribution with the mean µ and the standard
deviation σ. The entropy of X could therefore be written as

h(X) = −
∫ 1

0

p(x) log(p(x))dx

= −
∫ 1

0

p(x)

[
−1

2
log(2πσ2)− x2

2σ2
log(e)

]
dx

=
1

2
log(2πσ2) +

σ2

2σ2
log(e)

=
1

2
log(2πeσ2). (3)

Notice that Equation (2) can be rewritten using Equation (3)
to express mutual information with the standard deviation of
the whole dataset and the standard deviation of each class:

I =
1

2
(log(2πeσ2)−

n∑
i=1

pCi
log(2πeσ2

ci), (4)

where σ is the standard deviation of whole dataset, σci

denotes the standard deviation of the data from class i, and
pci represents the probability of class i in whole dataset. In
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this paper, we refer to mutual information expressed using
Equation (4) as the Gaussian approximation format.

IV. PROPOSED DUAL CHANNEL METHODOLOGY

This section discusses the methodology and implementa-
tion of our dual-channel SCAs. We begin by describing the
Gaussian approximation of mutual information (Section IV-A)
and its assumptions. Then, we discuss how to determine the
optimal coefficients for combining EM and power channels
using mutual information (Section IV-B). In Section IV-C, we
describe the overall methodology for three algorithms used in
this paper: correlation, differential, and ML attacks.

A. Preconditions

Before deriving the condition for a better combination than
the single channel, we first emphasize three preconditions for
the SCA and explain them in sequence. When target feature
X is selected:

1) The probability of the selected feature of the EM/power
trace (p(x)) obeys a Gaussian distribution.

2) Given class ci of n classes, the probability of the se-
lected feature of the EM/power trace (p(x|ci)) obeys the
Gaussian distribution.

3) The probability of all classes are equal to each other, i.e.,
p(ci = 1) = p(ci = 2) = . . . p(ci = n)).

For the first precondition, the operations should be the same
in every iteration of the AES encryption, and the only variation
for the encryption is the value processed in on-chip registers.
As well known, the power/EM features are mainly decided
by operating instructions inside the cryptosystem. Thus, the
power/EM features should obey the Gaussian distribution for
a specified time index. In this case, for calculating mutual
information between power/EM features and the target subkey,
we can use the Gaussian approximation (Equation (4)) for
mutual information.

For the second precondition, class ci means the target
subkey. Since the subkey is one byte long, there are n = 256
classes. The given class ci means the target subkey is fixed.
The operating instructions at the specified time index also
remain the same. Thus, it is plausible that we still take the
Gaussian approximation for the second precondition.

The third precondition assumes the chance of each value of
the target subkey is the same, which is valid. In the training,
we send the same plaintexts (same amount and information)
to the cryptosystem to keep the presence of each value of the
target subkey equal to each other.

Under these three preconditions and Equation (4), the mu-
tual information between target feature X and the class label
C could be transformed into

I =
1

2
log

(
σ2∏
∀i σ

2
n
ci

)
(5)

where n stands for the total number of classes (256 for attack-
ing a subkey), σ is the standard deviation of the target feature,
and σci is the standard deviation of the target feature in class
i. Figure 2 shows the mutual information of EM and power

(a) (b)

Fig. 2: Mutual information between (a) EM and class label;
(b) power and class label.

traces with class labels using two different approaches: “Gauss
approximation” uses Equation (5) and the “General formula”
uses Equation (1). The calculated mutual information value
under the two calculation methods is almost identical. In other
words, the three preconditions about Gaussian distribution
hold in practice.

B. Optimal Combination of Features

Based on information theory [5], mutual information (I) is
larger or equal to 0. Thus, we can get the following inequality
from Equation (5):

σ2∏
∀i σ

2
n
ci

≥ 1. (6)

Further, since log(x) is a positive correlation function, the
mutual information will increase if Equation (6) becomes
larger after linear combination. We use the symbol ȯ to
describe the nth power of Equation (6):

ȯ =
σn∏
∀i σci

. (7)

If ȯ becomes larger, the mutual information should also be
larger.

After this simplification, we finally move on to derive the
conditions for achieving higher mutual information after the
combination of traces from two channels. The features from
the first and second channels at the same time index are
denoted by random variables H1 and H2, and both are in the
range [0, 1]. We adopt α to describe the linear combination
coefficient and Z to describe the combined feature:

Z = αH1 + (1− α)H2. (8)

Note that Z ∈ [0, 1] as long as α ∈ [0, 1].
Without loss of generality, assume the mutual information

of channel 1 is equal or larger to that of channel 2, i.e.,

ȯH1
≥ ȯH2

. (9)

After the linear combination, the value of mutual information
of the combined feature Z could be described with ȯZ if
the distribution of combined features still obeys a Gaussian
distribution:

ȯZ =
σn
Z∏

∀i σZCi

. (10)
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This is possible since the mean value of the sum of the
two Gaussian distributions equals the sum of their mean
values, and the standard deviation could also be calculated
from the standard deviation of two Gauss distributions. Their
relationship is listed in Equation (11):

H1 ∼ N (µH1 , σ
2
H1

), H2 ∼ N (µH2 , σ
2
H2

),

Z ∼ N
(
αµH1

+ (1− α)µH2
, α2σ2

H1
+ (1− α)2σ2

H2

)
,

(11)

where N (µ, σ) represents the normal distribution function
with mean µ and standard deviation σ. Equation (10) could
be rewritten in terms of σn

H1
as

ȯZ =
σn
H1(

σH1

σZ

)n∏
∀i σZCi

. (12)

Finally, the condition that supports the improvements gained
from a combined feature is(

σH1

σZ

)n∏
∀i

σZCi
≥
∏
∀i

σH1Ci
. (13)

Empirically, Equation (13) is satisfied by some choice of α,
and the mutual information will therefore increase in many
cases. For example, in Figure 3, the maximum of mutual
information of the combined feature is around α = 0.7.
Assuming H1 and H2 are the power and EM channels, this
value is larger than the single channels (α = 0 and α = 1,
respectively). Nevertheless, by choosing α = 0, the mutual
information of the combined feature could never be worse
than the first channel.

In order to determine the value of α that makes the mutual
information of the combined channel larger than individual
EM and power channels, we shall find α∗ = argmaxα(ȯZ).
Further, since ȯZ ≥ 0, this is equivalent to argmaxα(ȯ

2
Z).

The analytical derivation is provided as follows:

ȯ2Z = f(α) =
∏
∀i

fi(α) (14)

where

fi(α) =
σZ

2

σ2
Zci

. (15)

Therefore,

f(α) =
σZ

2n∏
∀i σ

2
Zci

=
∏
∀i

σZ
2

σ2
Zci

(16)

α∗ can be calculated by setting the first derivative of f(α) = 0.
Using the relationship shown in Equation (11), this derivative
can be written as

df(α)

dα
=

(∏
∀i

fi(α)

)(
2α(1− α)

α2σ2
H1

+ (1− α2)σ2
H2

)
v(α)

(17)
where

v(α) =
∑
∀i

σ2
H1

σ2
H2Ci

− σ2
H2

σ2
H1Ci

α2σ2
H1Ci

+ (1− α)2σ2
H2Ci

. (18)

(a) (b)

Fig. 3: Combined 1st feature’s linear coefficient α vs. (a)
mutual information (MI) and (b) ȯ.

Examining the middle term in Equation (17) yields two
trivial zero points that occur at α = 0 and α = 1. Note again
that 1 and 0 correspond to single power and EM channels,
respectively. However, another optimal point also occurs when
v(α) = 0. Thus, we define

α∗ = α|v(α)=0 (19)

Empirically, for the 1st feature coefficient, the calculated
maximum point using this formulation is 0.69, which is very
close to the experimental result of 0.7 in Figure 3(b).

C. Step-by-Step Attack Workflows

The overall methodology consists of three steps or phases:
feature collection, feature selection, and testing/attack. The
feature collection phase (Section IV-C1) simultaneously col-
lects EM and power traces during AES encryption. In the
feature selection phase (Section IV-C2), we select a subset
of feature indices from traces and compute their associated
coefficients (α) for the dual channel combination. In the
testing (attack) phase (Section IV-C3), we collect power and
EM traces, generate combined traces with the indices and
coefficients from the feature selection phase, and execute one
of three attack algorithms to recover target subkeys or key bits.

1) Feature collection phase:
Correlation Attack. At the start of the feature collection
phase for the correlation attack, we create training templates
for each class label and load the first one onto the target
board (i.e., 0x00 for subkey label #1). After loading a sample
template, we generate s random plaintexts and send each to
the target’s AES. For each plaintext, we simultaneously collect
power (Pt,Ci=0) and EM (Et,Ci=0) traces for the first round
of AES encryption [28]. Here, 1 ≤ t ≤ s and thus t represents
the trace number. ci is the value of the target subkey and is
in the range 0x00 to 0xFF while i stands for the index of
target subkey (1 ≤ i ≤ 256). This entire process is completed
for every target subkey value (ci, 1 ≤ i ≤ 256). In the end,
we get a dataset that has 256 classes. For each class ci, the
dataset contains s power traces and s EM traces. We refer
to each sampling point of a trace as a feature. Considering
the difficulty of processing all these features, we normalize
each power and EM feature into the range [0, 1]. Further,
we emprically select a w-size feature window for the target
subkey. Thus, from this point forward, the index of each trace
is in the range [1, w].
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Differential & Machine-learning Attacks. The differential
and machine-learning attacks target a single bit of the target
subkey related SBox output for each subkey and maximize
the difference between different logic levels of the target bit.
Thus, we implement an appropriate template for the target
board and simultaneously collect s number of EM and power
traces with random plaintexts and target bit values during AES
encryption. Like the correlation attack, we also normalize the
power and EM features into the range of [0, 1].

2) Feature-selection phase: The purpose of the feature
selection phase is dimensional reduction, which is critical to
reducing computational complexity of the attacks, especially
for a real-time implementation. Note that the feature-selection
phase for the three attacks is similar. The only difference is
the number of classes. The correlation attack targets a whole
byte, and thus it has 256 classes. The differential and machine-
learning attacks, on the other hand, target a single bit of Sbox
output, and thus only have two classes.

For our dual channel attacks where EM and power fea-
tures are combined according to Equation (8), we begin by
calculating the combination coefficients (α) for each feature
index k using the approach described in Section IV-B. That
is, we calculate all the standard deviations required by Equa-
tions (18). Using them, we determine the optimal combination
coefficients (α∗

k) according to Equation (18) for each feature
index, 1 ≤ k ≤ w. Each α∗

k is used in Equation (16) and the
resulting value is denoted as ȯ2Zk

. This value is an estimate of
the mutual information for the kth combined (or dual channel)
feature, i.e., Zk = α∗

kPk + (1− α∗
k)EMk. These features are

ranked according to ȯ2Zk
and we select a subset consisting of

w∗ dual channel features (1 ≤ w∗ ≤ w).
3) Testing phase: In the testing phase, we collect TN

testing EM (EM ) and power (P ) traces, generate combined
dual channel traces (Z) for the w∗ features using the feature
selection approach described above, and the combined traces
(Z) and their associated plaintexts are used by the attacks
described below. Algorithm 1 is used to explain the corre-
lation and differential attacks (combined for brevity) while
Algorithm 2 illustrates the ML attack.
Correlation attack. The details of the correlation attack are
explained in Algorithm 1 (black and red lines). First, the
possible guess subkeys (j) and the kth plaintexts (p(k, i))
are used to calculate the hypothesis data (g1) for different
key guess indices (i). The key guess index (i) here means
the position of the subkey in the whole key. The 128-bit
key can be divided into 16 subkeys, and each subkey has 8
bits. In this case, each subkey has 256 possible values and
the hypothesis (g1) should be calculated 256 times, i.e., once
for each possibility. The hypothesis model that we use is the
Hamming weight (HW) model (line 3). The HW model is
based on how many bits with a value of ’1’ exist in the result.
The guessing value of the subkey needs to be XORed with
its corresponding 8 plaintext bits, and the result is sent to its
related SBox. After getting the hypothesis value (g1(k, j)), the
correlation (r(k, j)) can be calculated between the combined
trace sample points/features (Z) and the hypothesis value (g1)

Algorithm 1 Algorithm for correlation and differential attack.
Input: Z: Testing combined trace, P: Plaintext, N1: Total trace

number in set1, N0: Total trace number in set0, Set1: Sum of
trace for set1, Set0: Sum of trace for set0, i: Index or position of
target subkey, TN : Number of collected traces, Red: Correlation
attack, Brown: Differential attack

Output: key
(1)
i , key(2)

i : the ith guess subkey for differential attack
1: for k = 0 to TN − 1 do
2: for j = 0 : 255 do
3:

∣∣ g1(k, j) = HW(SBox(p(k, i)
⊕

j))
4:

∣∣ g2(k, j) = BIT(SBox(p(k, i)
⊕

j), 8)
5: end for
6: end for
7: for k = 0 : TN − 1 do
8: for j = 0 : 255 do
9:

∣∣ r(k, j) = Correcoef(Z,g1)
10: if g2(k, j) = 1 then
11:

∣∣ Set1ij = Z + Set1ij
12:

∣∣ N1ij = N1ij + 1
13: else
14:

∣∣ Set0ij = Z + Set0ij
15:

∣∣ N0ij = N0ij + 1
16: end if
17: end for
18: end for
19: key

(1)
i = argmax

j
(r(k, j))

20: key
(2)
i = argmax

j
(|Set1ij/N1ij − Set0ij/N0ij |)

for every possibility with the Pearson correlation equation (line
9). After finishing the calculation, the index value of the largest
peak in the correlation coefficients is chosen as the guessed
subkey (line 19). In our later experiments, we repeat this
process Niter times, verify the outcome of the guessed subkey,
and record the number of times that the algorithm’s subkey
guess is correct (Ncorrect). The success rate (SR) represents
the accuracy of the attack and is expressed as

SR =
Ncorrect

Niter
× 100% (20)

Differential attack. The details of the differential attack are
presented in Algorithm 1 (black and brown lines). The hy-
pothesis data (g2) stands for the target bit of the corresponding
SBox outcome (line 4). j is the guess subkey, i is the position
of the target subkey in the whole key, and p(k, i) is the
outcome of the initial round. If the target bit (g2(k, j)) equals
1, the power traces are divided into Set1ij (line 10), and the
total number of traces in set 1 (N1ij) in incremented by 1
(lines 11 to 12). Otherwise, the power traces are divided into
Set0ij (line 13), and the total number of traces in set 0 (N0ij)
is incremented by 1 (line 14). In the end, the guessed key is
the one with the maximum absolute difference between the
mean values of set 1 and set 0 (line 20). Success rate (SR) is
also used to evaluate this algorithm’s effectiveness.
Machine-learning (ML) attack. The details of the machine-
learning attack are presented in Algorithm 2. When the
machine-learning module receives the combined testing trace
(Z), it obtains the result of the target bit (g) from an SVM
classifier (line 3). The target bit predicted by the classifier
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Algorithm 2 Algorithm for machine-learning attack.

Input: Z: Testing combined trace, i: bit position of target
subkey, Classifier: SVM classifier

Output: keyi : the ith guess subkey
1: for k = 0 : TN − 1 do
2: for j = 0 : 255 do
3:

∣∣ gclassifier(k) = Classifier(Z)
4:

∣∣ g(k, j) = BIT(SBox(p(k, i)
⊕

j), i)
5: end for
6: end for
7: keyi = argmin

j
(
∑

∀k |gclassifier(k)− g(k, j)|)

(gclassifier) is compared with the guess target bit (g(k)) from
256 guess subkeys (line 4). Ideally, the match rate between
the wrong guess bit (g) and the subkey bit from the classifier
(gclassifier) should be around 0.5 since they are not related.
However, the match rate between the guess target bit from the
classifier (gclassifier) and the correct guess bit (g) should be
close to 0 as the total number of testing traces (TN ) becomes
larger. In the end, we take the index of guess with the highest
match rate as the correct subkey (ki) for target bit index i (line
7) by minimizing the absolute sum of differences between the
guess and classifier results across traces. The success rate (SR)
is also used to evaluate the effectiveness of this algorithm.

V. REAL-TIME IMPLEMENTATIONS

In the section, we explain how to implement the DPA and
SVM-based SCAs inside RDCP for the real-time mode. Real-
time implementations are important for intelligence-related
applications which demand in situ and stealthy approaches.
SCAs originated during the Cold War, e.g., TEMPEST [1]
which is now mitigated by RF shielding. However, if a small
module like RDCP (see Figure 5) could be inserted into
a system, it can bypass such countermeasures. In contrast,
modern SCAs require the attacker to acquire the target under
attack, bring it into a lab setting, and use an expensive
oscilloscope and PC to extract the key. Some target systems
are too large and moving them into the lab is not feasible.
Further, even for smaller targets that are easy to remove,
stealing the target alone might alert the system’s owner that
it is under attack. This is non-ideal for intelligence-gathering
applications where the point is to recover information without
being detected.

The FPGA on RDCP is a Spartan 3e500 [27]. Even though
it is inexpensive and tiny in size, it still has limitations in
data transfer speed and memory size (30kB). Thus, the most
challenging aspects of implementing the algorithms in real-
time are the time-consuming and memory-costly calculations.
Thus, we cannot directly load the correlation attack algorithm
presented in Section IV-C since it needs too much space. The
differential and machine learning attacks can be implemented,
however, with careful memory management. Below, we de-
scribe how we implemented the testing (attack) phase of the
differential and ML attack classifiers into RDCP.

Fig. 4: Flow diagram for differential attack in RDCP.

A. Differential Attack’s RDCP Implementation

In short, memory is reused by processing traces for each
plaintext one at a time and also saved by only saving dual-
channel features. Complicated calculations inside the FPGA
are bypassed by transforming the division into multiplication.
With this approach, no matter how many traces RDCP uses in
the differential attack, memory usage remains the same. This
makes the real-time implementation scalable.

The step-by-step diagram is shown in Figure 4. RDCP
first receives the plaintext P , and and combine testing traces
(Z). The indices with the highest mutual information contents
and their combinational coefficients are determined in the
feature-selection phase1. RDCP stores a subset of these useful
features (e.g., w∗ = 5 in our results section) of the upcom-
ing power/EM traces, and uses the associated coeffcients to
shorten the combined traces (Z). At the same time, RDCP
calculates the target bit (gj) from the associated bit of the
correlated Sbox (i) output. The correlated Sbox is decided by
the position of the target subkey (i), and the hypothesis value
j. For AES-128, i ∈ [1, 16] and j ∈ [0, 255]. If the target bit is
equal to logic 1 (0), the combined feature is added into set1i,j
(set0i,j), and the number of traces in set 1 (set 0) denoted
by N1i,j (N0i,j) is increased by 1. Once the hypothesis (j)
reaches 255, RDCP moves on to process the next trace and
associated plaintext. Then once RDCP has processed enough
traces as specified by the user (TN ), it adopts a bubble sorting
method [24] to find the index of the max absolute value of the
difference between the “mean value” of corresponding set1
and set0. Note that since the division operation is hard to
achieve in an FPGA, we covert the division into multiplication
as follows: the mean difference

(
Set1i,j
N1i,j

− Set0i,j
N0i,j

)
is trans-

formed to (Set1i,j ×N0i,j)− (Set0i,j ×N1i,j).

B. ML Attack’s RDCP Implementation

In short, real-time ML attack implementation exploits the
same memory reuse/saving techniques as the differential at-
tack. The detailed flow diagram is not shown since it is similar
to the differential attack. The main difference is the classifier.

1This is done offline using the approach described in Section IV-C2
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(a) (b) (c)

Fig. 5: (a) Depiction of RDCP in the field. RDCP is a 20 mm by 20 mm PCB board with chips for signal processing,
communication, and memory. RDCP also measures the target’s power/EM traces; (b) Depiction of the RDCP schematic.
RDCP is powered by the Vdd pin of the target. The traces are digitalized by ADC chips on RDCP. JTAG and UART modules
are used to program the FPGA and transmit data; (c) Experimental setup for collecting power traces from ATmega328P.

Considering the complexity of the ML algorithm, we adopt
the linear-SVM classifier

f(x) = xTβ + b. (21)

Here x stands for the input feature vector, β refers to the
SVM coefficient and b is the bias for the classifier. β
and b are obtained offline using the approach described in
Section IV-C3. To implement SVM classifier on the FPGA,
we bypass the floating point calculations by taking their 10
times integer approximation.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we validate our methodology by simulta-
neously collecting power and EM traces from a target AES
implementation and extracting the key using two different
modes: offline and real-time. The proposed dual channel
approach is compared using single channel variants as well
as other existing dual channel approaches (concatenation [19]
and sum [17]).

A. Experimental Setup

Power/EM trace measurements. For collecting EM/Power
traces in offline mode, we use the MDO3102 oscilloscope
[29] and a commercial EM probe (LF1 Set from LANGER
EMV Technik [30]). For collecting EM/power traces in real-
time modes, we use our custom-designed 20 mm by 20 mm
RDCP. Figure 5(a-b) depicts the RDCP deployment scenario
and schematic. RDCP contains two ADCs [31] for digitalizing
power/EM traces at the same time, a Bluetooth module [33] for
remote communication, and a Xilinx Spartan-3E (XC3S500E)
FPGA for data processing. We also use 8 I/O ports on the
board and connect them to an external UART module to
transmit trace data for offline mode.

The experimental setup is shown in Figure 5(c). The target
device is Arduino UNO, and its original core frequency is
16 MHz. The sampling speed of the RDCP and oscilloscope
(MDO3102) for real-time and offline modes are 128MS/s and
100MS/s, respectively. The power/EM traces are collected
by RDCP and transmitted to the PC via UART whenever

offline processing is performed. In the real-time mode, RDCP
collects power/EM traces and processes them internally. A
guess subkey is sent via Bluetooth module or external UART
modules to the laptop.
Methodology parameters. In our experiments, the window
size of the traces (w) is set to 200 for offline experiments,
and number of traces collected for each class to compute
coefficients and mutual information (s) is 1,000. The number
of selected features (w∗) in the real-time mode is 5, and in
the offline-mode is 20.
AES target benchmark. The main function of the target
benchmark is to encrypt plaintext with the AES-128 algorithm.
While training our classifiers (specifically, finding the rela-
tionship between all features and the target subkey), we need
to send the same plaintexts to the Arduino and only make
modifications to the target subkey. In other words, the target
subkey is the only variable in the feature-selection phase.
Attack model. We assume the attacker can access the encryp-
tion device. This means the attacker can get the information
of plaintext and ciphertext, and access the power/EM channels
of the encryption device with oscilloscope/RDCP and/or a
commercial EM probe. However, the attacker does not know
the hidden key inside the encryption module.

All experiments are performed on two different Ar-
duino UNOs. Training and calculation of optimal coeffi-
cients/features are only performed using data from board 1
while testing is performed on both boards 1 and 2.

B. Offline Mode Results

In this subsection, we use offline mode and the three attacks
mentioned in the methodology section. Table II shows the
number of measurements to disclosure (MTD) to achieve
a 100% success rate with the differential attack for all 16
AES-128 subkeys on both Arduino UNO boards. Here, the
“Combined” results combine EM and power channel using
the proposed dual channel methodology while power/EM
channel refer to only using power/EM features. The single
EM and the power channels need above 400 and 600 traces
for different boards, respectively. In the offline experiments,
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TABLE II: MTD for AES-128 encryption module in offline
mode using differential attack.

Subkey Power EM Combined
Board 1 Board 2 Board 1 Board 2 Board 1 Board 2

1 150 150 100 100 70 85
2 400 350 250 250 160 200
3 950 900 750 600 420 400
4 800 800 400 400 350 350
5 800 800 380 400 320 300
6 200 170 80 100 40 50
7 1200 1150 1000 950 450 450
8 1000 1000 700 750 400 420
9 800 800 400 380 300 300

10 200 250 150 150 60 50
11 300 320 250 280 150 180
12 1000 900 650 600 450 430
13 1000 950 550 550 400 400
14 300 320 200 200 140 150
15 700 650 400 450 350 350
16 400 400 250 250 200 250

Avg. 637 619 394 400 267 272

interference/white noise is inevitably generated, and they could
directly impact the collected power traces from PCB boards.
However, for collecting EM waves, the selected position
is more close to the signal source and these interference
signals/white noise attenuate through the air. Thus, the power
channel has lower SNR ratio than the EM channel, and needs
more traces to achieve full extraction rate than the EM channel.
The experiment result shows the combined feature needs less
traces than power/EM channel to achieve 100% success rate.
That is, the proposed approach only needs 267 traces on
average for extracting subkeys from board 1, and 272 traces
for board 2.

Besides the difference between single and dual channels,
it is clear that different subkeys require different number of
traces to achieve 100% success rate. For example, for the
combined case in Table II, subkeys 1, 6, and 10 need less than
100 traces. However, subkeys 3, 7, 8, 12, and 13 need more
than 400 traces. This behavior is consistent regardless of the
channel used. The reason is caused by the encryption module
on Arduino UNO, and the position where we collect traces.
When the Arduino encrypts data, it process the plaintext with
different subkeys at different positions. If this position is closer
to where we collect power/EM traces, the SNR is higher and
we need less traces to achieve full extraction rate. Neverthe-
less, the proposed dual channel methodology (combined) has
various improvements against power/EM channel for different
subkeys. In Figure 6, we plot success rate versus trace number
for subkeys 7 and 13 for the differential attack algorithm. For
subkey 7, the combined channel requires 40% and 65% fewer
traces compared to single channel EM and power. However,
as shown in Figure 6(b), the combined channel only increase
in efficiency by 8% than the EM channel for subkey 13.

We note a similar improvement for machine-learning attack
results. Figure 7 shows the success rate versus trace number
for subkeys 12 and 16. In Figure 7(a), the combined channel
for subkey 12 increases efficiency by 50% and 80% from
single EM and power channels. However, in Figure 7(b), the
combined channel only reduces number of traces by 10%
compared to EM channel. The improvement in efficiency is

(a) (b)

Fig. 6: Success rates vs. number of traces for differential attack
on subkeys (a) 7 and (b) 13.

decided by SNR and the mutual information of features from
power/EM channels at different time indices. Empirically, if
the mutual information of the EM channel is much better than
the power channel, the combined channel will chose α ≈ 1
and won’t achieve as much improvement as the case where
EM and power channels have similar mutual information.

In Table III, we also compare the average MTD for achiev-
ing 100% success rate with our three methods and with
existing dual channel methods. Compared with the average
traces used for extracting subkeys with [17] and [19], we save
over 50% and 70% traces with our dual-channel ML variant.

The results in Tables II and III also prove the robustness of
our methodology when a different board is used for training
and testing. Even though there exists some process variations
among boards, we need nearly the same amount of traces
for 100% success rate in board 2 using feature indices and
coefficients obtained from analysis of board 1 data. Due to
space limitations, we only present results for two boards.
However, we note that a third board produced similar results.

In Table III, we also have tried PCA for feature extraction
in our machine-learning attack in offline mode. In PCA, 1000-
sample traces are used and we take 20 principal components.
Compared to the machine-learning attack without PCA, the
single EM channel needs 179 traces on average, the single
power channel needs 257 traces and the combined channel
needs 125 traces. It is better than the machine-learning attack
result with a single/combined channel before (280 for power,
202 for EM, 143 for combined). It must be noted, however,
that PCA is not lightweight enough for implementation on
a resource-limited device and for real-time. PCA’s dimen-
sionality reduction only reduces the effort needed to perform
classification. Implementing PCA on the device performing
the attack needs extra memory to store all power and EM
trace sampling points as well as a large PCA coefficient
matrix. In addition, to generate each principal component,
all the samples (1,000) of each trace need to be linearly
combined using the PCA decimal coefficient matrix. This is
time consuming and will make it difficult to meet real-time
constraints without larger computational resources. In contrast,
the proposed approach only needs to store the useful trace
samples (e.g., 5 for each channel) to create 5 features.

C. Real-time Mode Results

In the real-time mode, we implement DPA and machine-
learning algorithms onto RDCP and let it extract the subkey
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(a) (b)

Fig. 7: Offline success rate vs. number of traces for machine
learning attack on subkeys (a) 12 and (b) 16.

TABLE III: Comparison of average MTD for 100% success
rate on AES-128 in offline mode.

Method Channel Trace
Board 1 Board 2

Correlation attack
Power 5597 5802

EM 4135 4322
Combined 3216 3455

Differential attack
Power 690 702

EM 406 423
Combined 267 272

Machine-learning attack w/out PCA
Power 280 285

EM 202 207
Combined 143 150

Machine-learning attack w/ PCA
Power 257 266

EM 179 185
Combined 125 129

Concatenated trace profiling [19] Combined 399 413
Sum over std non-profiling [17] Combined 3623 3850

bits internally. Since feature selection coefficents and indices
can be determine offline, we can eliminate less useful features
and then combine the useful ones just as in the offline mode.
The details of how we implement the proposed methodology
in real-time was presented in Section V.

The number of MTD to achieve 100% success rate for
different channels in real-time is presented in Table IV.
Compared with the offline mode results, RDCP needs more
traces to achieve 100% success rate. The average MTD for
power/EM/Combined channel of board 1 is 3171, 5637, and
2450. We also show the success rate vs. number of traces for
extracting subkey 6 in Figure 8. For example, with 200 traces
for the DPA algorithm, the combinational channel has 70%
success rate, the power channel has 55% successful extraction
rate and the EM channel has 25% successful extraction rate.
However, in the offline mode, the extraction rate for subkey 6
could achieve 100% with 200 traces. This also happens with
the ML attack.

Compared with the offline mode results, RDCP needs more
traces to achieve 100% success rate. The likely culprit is the
approximations needed for the real-time approach as discussed
in Section V. For bypassing division and decimal calculation
inside FPGA, we approximate all decimals with integers, and
this reduces the attack accuracy. Another thing to clarify is
why the single power channel requires less traces than the
single EM channel in the real-time mode.2 This is due to the
design of the internal EM antenna inside RDCP. Different from
the mature design of the commercial EM probe in the offline
mode, the internal EM antenna inside RDCP is distributed

2This is the opposite trend compared to offline mode (see Table II).

TABLE IV: MTD for AES-128 encryption module in real-time
using differential attack.

Subkey Power EM Combined
Board 1 Board 2 Board 1 Board 2 Board 1 Board 2

1 350 500 1200 1200 300 400
2 2500 3000 6000 6500 2000 2200
3 5000 5500 7000 7500 4000 4500
4 4000 5000 7500 7800 3500 4000
5 3000 5000 5000 6000 2500 3500
6 150 200 500 650 100 150
7 5500 6000 10000 10000 4000 4500
8 2500 3500 5500 6500 2000 3000
9 3000 3500 8000 8000 2000 3000
10 550 900 3000 4000 500 700
11 3000 4000 7500 8000 2500 3000
12 6000 6500 9000 9000 4000 4200
13 6000 6500 9500 9500 4500 4700
14 3000 3000 7000 7000 2500 2500
15 5000 5000 1000 10000 4000 4000
16 1200 1500 2500 2500 800 900

Avg. 3171 3725 5637 6509 2450 2828

(a) (b)

Fig. 8: Real-time success rate vs. number of traces on subkey
6 for (a) differential attack and (b) machine-learning attack.

in four inner layers of RDCP, and the bad interconnection
between different antenna layers undermines the SNR of
collected EM traces in the real-time mode. Nevertheless, the
real-time experiments still demonstrate the efficiency of the
proposed dual-channel methodology. That is, it achieves a
higher success rate compared to a single EM/power channel
with the same amount of traces and has lower MTD.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a mutual-information-based
feature selection method to find high-correlation features and
the best combination of power and EM traces for SCAs.
Then, we successfully implemented the dual channel DPA
and SVM algorithms in real-time. In future work, we will
upgrade RDCP to a new version that consists of a larger
memory FPGA, higher accuracy ADCs, and improved EM
measurement capabilities. The larger memory FPGA could
contain more complicated algorithms (e.g., deep learning) and
the 12-bit ADC can collect EM and power traces at higher
accuracy and faster speed. With the improved version of
RDCP and more advanced algorithms, we also hope to test
the framework on a RISC-V implementation on an FPGA as
well as on a masked implementation of AES and demonstrate
real-time instruction disassembly.
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