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Abstract

Advances in vision and deep learning have revolution-
ized feature extraction for face recognition and verification
systems, yet, performing kinship verification from such fea-
tures is still challenging. Ongoing research attempts to im-
itate a human by identifying features for kinship verifica-
tion. In this paper, we propose KinfaceNet, a deep learning
based kinship feature extractor, capable of extracting kin-
ship features from a single input image independently with-
out requiring its kin pair image. The base model of the
method is adopted from face recognition domain which is
then transfer learned in the domain of kinship by learning a
distance mapping from face images to a compact Euclidean
space where distances directly correspond to a measure of
kinship similarity. Thus, unlike most of the works in deep
learning based kinship domain, the extracted features can
be used in many other applications such as image genera-
tion and family based clustering, etc. Training is performed
by rearranging the data into classes of kin pairs and us-
ing a state-of-the-art triplet mining algorithm to address
the unbalanced kinship data problem which causes over-
fitting. Also, one of the major advantages of our framework
is that training can be performed on any face feature ex-
tractor model pre-trained on large face recognition data,
thereby reducing training time by a considerable amount.
Comparable verification accuracy is obtained from simple
MLP network at only 20th epoch with KinfaceNet features
extracted from the Family-In-the-Wild dataset, the largest
in the wild kinship dataset available, as well as KinfaceW-I
and II datasets.

1. Introduction

Human faces convey a pool of information starting from
identity, age, and gender to emotional state and intentions.
One such information is kinship. Kinship cues are proper-
ties that convey resemblance between human faces which
helps in recognizing the relatedness between people. They
are traits that are transferred from one generation to another,
like from parents to their children. It is well known that

Figure 1. KinfaceNet features are such that distance between kin
pairs is less than non-kin pairs.

DNA can help in determining the kin relationship and an-
cestry with high accuracy. However, the procedure to ex-
tract kinship information from DNA is complex. A recent
study reveals that more than 130 regions in human DNA
play an important role in sculpting facial features [1–3].
These visual capacities to detect relatedness become weaker
with lower degrees of relatedness [4]. Hence it is evident
that in future, an accurate mapping of the kinship facial fea-
tures from images and the regions in human DNA can help
in determining the kin relationship without undergoing the
complexities of DNA testing. Facial kinship cues identifica-
tion has the potential to reduce, if not eliminate, the number
of experiments needed for DNA-based analysis in critical
situations like forensics.

Another study provides a detailed investigation on the
relationship between human recognition of kinship and de-
gree of relatedness [4]. It states a possible effect of age and
gender on kinship clues. [5] compares the accuracy of kin-
ship recognition from face images obtained by humans and
computers. The results showed that humans identified kin
pairs of KinFaceW-I and KinFaceW-II [6] with an accuracy
of 78.6% and 83.5%, respectively while the state-of-the-art



method on the same datasets were 82.7% and 86.0%, re-
spectively. Another paper [7] states that for FIW dataset the
mean accuracy by humans is 57.5%. Over the years, many
automated computer vision methods have been developed,
where machines were shown to be better in determining kin
relation than humans [8–17]. For our proposed method too
the accuracy is higher than kinship verification by humans.
Also, the accuracy depends largely on the degree of related-
ness used for evaluation. For example, the kinship cues will
be larger between a parent and a child compared to grand-
parent and grandchild.

In this paper, we have focused on extracting a vector
loaded with kinship information. To maximize the kinship
cues in the features we have used only the highest degree
of relatedness, i.e., Parent-Child for training and testing of
our feature extraction models. Similarly, to minimize bias
due to gender, training is done on all combinations of Fa-
ther and Mother as Parent and Daughter and Son as Child.
An introductory image of the goal of the paper is shown in
Figure 1. While applications of face recognition in various
fields are exploding, kinship identification and analysis, be-
ing one of the inherited domains, has significant influence
on real-life applications starting from family photo album
organizations to critical applications like surveillance, se-
curity, tracking, forensic etc. The main advantage of our
KinfaceNet framework over existing network focused deep
learning based kinship verification systems is that it uses
a simple data mining and training to achieve state of the
art accuracy and can support a plethora of applications and
not just kinship verification without requiring complex re-
sources and time. In Section 5.4, we have discussed more
about the applications of our proposed framework.

1.1. Related Work

Research performed in the domain of kinship cues iden-
tification using computers can be broadly classified into
two types: network-focused and feature-focused. Network-
focused systems are those methodologies where the pro-
posed method puts more emphasis on deriving a network
architecture which, through training, finds a mapping be-
tween kin and non-kin pairs and provides higher accuracy.
Most of the deep learning works done in the kinship do-
main are network focused [15, 18–23]. Over the years, the
input features used for training such network focused deep
learning methods are either Local Binary Pattern (LBP),
face images, parts of face images like eyes, nose, etc. or
face recognition features like arcface, facenet, etc. Some of
the notable works that uses each of these as input feature
is given in Table 1. They have mainly relied on the archi-
tecture to train and find the mapping. Hence the number of
computations for each of these models is very high.

On the other hand, feature-focused methods mainly con-
centrate on computing the perfect kinship features contain-

ing maximum kinship cues. These features are such that,
even simple distance measures can differentiate between kin
and non-kin pairs without the need of training deep net-
work architectures. Most of these features in kinship do-
main are handcrafted features or statistical features without
involving any training. Some of the work done in this do-
main are [5, 24–26]. Although some of the papers have
reported very high verification accuracy [25], these feature
computations will become more computationally expensive
with larger amount of data. Thus, we see the main com-
putationally expensive part of a network focused method is
training and for feature focused method it is feature extrac-
tion. Also, the network focused methods work best with
more data while the feature focused ones work best with
less data. Moreover, the main utility of the state-of-the-art
network and feature focused methodologies in the domain
of kinship are mainly concentrated only on kinship verifica-
tion.

In this work, the shortcomings of the network focused
and feature focused methodologies are addressed using a
simple transfer learning based framework. The proposed
KinfaceNet framework can be computed both on large as
well as small amount of data, is computationally efficient,
and outputs a feature vector which can be used in a plethora
of applications including kinship verification. It has all the
advantages of deep learning, can be used in the existing
kinship verification architectures, does not require exten-
sive training and outputs a feature vector instead of kin or
non-kin classification results. Two of the notable surveys in
this domain that provides a complete list of methodologies
are [8] and [27].

Also, an interesting observation from all the existing
works, is that although the kinship verification problem is
inherited from the research problem domain of face verifica-
tion, the accuracies obtained are not as high as the reported
accuracy in the domain of face verification. The reported
accuracy is also worse for larger datasets like Family-In-
the-Wild (FIW) [28]. Hence most of the state-of-the-art
works focus on improving the accuracy by using different
deep learning architectures or statistical feature extraction.
But the goal of this work is to find a feature vector contain-
ing kinship cues which can be used in many more appli-
cations in this domain, as proposed in Section 5.4, and not
just achieving the highest verification accuracy. For proof of
concept and to show the application of the feature in verifi-
cation, it is shown that without involving any rigorous train-
ing or computations, unlike the methods in the domain of
network focused and feature focused, the extracted features
provide comparable high verification accuracy at a very op-
timum time, even for the large FIW dataset, using a simple
Multi-Layer Perceptron network after only 20 epochs. The
contributions of this paper are summarized follows:

• Proposes a deep learning based kinship feature extractor,



Table 1. Related work done in the domain of deep learning based
kinship verification.

Paper Input Dataset Accuracy Method Epochs Remarks

[15] Full Face
Kinfacew-I

KinfaceW-II
74.8
85.3 CNN 30

Not performed on large data
Only verification

Trained from scratch
More time complexity

[19] Parts of Face
KinfaceW-I
KinfaceW-II

76.5
88.7

Attention
Network

60
100

Complex network
compared to data size
Trained from scratch

More time complexity

[18]
Local Binary

Pattern
KinfaceW-I
KinfaceW-II

66.9
71.3

Stacked
Auto-encoder -

Much less accuracy,
complex network,

less data

[20]
Face Recognition

Feature
Family-In-the-Wild

(FIW) 79.6
Unified Multi-task

learning 60
Uses face recognition system
for encoding, results can be

improved using our approach

where the kinship cues of an image can be mapped to a
512 dimensional feature vector. Thus our method can be
used beyond kinship verification. It can be used in prob-
lems like simple document tagging to complex problems
like GAN generated synthetic kin image generation.

• Proposes a framework that can blend any pre-trained face
feature extractor model, which are available in abun-
dance in the current literature. Thus it can reduce train-
ing time to a considerable amount, reduce computational
resource requirement and also address the balanced data
availability bottleneck in kinship.

• Performs feature analysis and computes verification ac-
curacy of the features commonly used in the state-of-the-
art deep learning based methods (LBP, face image, parts
of face image, face embedding using a face recognition
embedding extraction network) and proposed framework
features with and without transfer learning.

• Lists the utility of the feature vector in a plethora of ap-
plications including kinship verification.

The rest of the paper is organized as follows. In Section 2,
the necessary background on kinship and kinship verifica-
tion systems along with algorithms and networks used in
the paper is provided. In Section 3, the proposed frame-
work and its methodology is described in detail. The kin-
ship datasets used are mentioned in Section 4. The experi-
mental setup and results are presented in Section 5. Finally,
the paper is concluded with directions for future research in
Section 6.

2. Background
An exact objective definition of kinship is the traits that

are transferred from one generation to another through our
genes. A human can identify these traits and verify if
they are related or not. Kinship mostly has three degrees;
namely, primary, secondary, and tertiary kinship. The pri-
mary degree refers to kin that are closely and directly re-
lated to one another. The secondary and tertiary degree
refers to the primary and secondary kin of the first degree
kin respectively. Most of the available kinship face datasets
contain only four types of primary kinship paired entities:
mother-son (MS), father-son (FS), mother-daughter (MD)
and father-daughter (FD). These four categories of image

Figure 2. Proposed Framework. A triplet set of input image with
Anchor, Positive, and Negative images are given as input to a pre-
trained face recognition model and trained. The output of the
framework is the transfer learned Kinface Model capable of ex-
tracting kin features.

pairs contain most of the kinship information. In our work
we will only concentrate on these four pairs. In this work,
we have focused on creating a feature vector that will help
a computer to know the traits and efficiently identify kin
pairs.

2.1. Face vs. Kinship Verification Feature Extractor

Over the last century, biometrics have been used to iden-
tify humans. Faces are one of the most common modalities
used to do so. In any automated biometric verification sys-
tem, a series of features are extracted from a face before
performing face verification. Just like kinship verification,
in this domain too, the first features explored were simple
handcrafted features like parts of the face. Later came the
more advanced statistical features like Local Binary Pat-
tern. (LBP) [29], Histogram of Gradients (HOG), Speeder
Up Robust Feature (SURF), etc. However, the major boom
was observed with the advent of deep learning based fea-
ture vector extraction systems, the most prominent one be-
ing FaceNet which outputs a 128D feature vector [30]. In
this work we aim to create a similar deep learning based
metric feature vector extraction system which the kinship
domain lacks. An immediate utility of our work will to gen-
erate synthetic kinship data, which is another bottleneck in
this domain.

2.2. Triplet Loss

Triplet loss is a loss function for machine learning algo-
rithms where a reference input (called anchor) is compared
to a matching input (called positive) and a non-matching in-
put (called negative). In our problem statement, we have
considered two images of the same family, mainly pairs
from one of the four primary kin relations mentioned in
Section 2, as the anchor and the positive images (i.e., kin



pair), and an entity from a different family as a negative
(i.e., non-kin) input. The loss function is given as

Loss(A,P,N) = max(∥f(A)− f(P )∥2 −
∥f(A)− f(N)∥2 + α, 0),

(1)

where A, P , and N are the anchor, positive (or kin with
anchor), and negative (non-kin with anchor), respectively.
The feature vector embedding is represented as f and α is
the margin between the positive and negative pairs.

This loss is used to train a neural network. To ensure con-
vergence, it is crucial to select triplets that violate the triplet
constraint in Equation (1). For this, online hard triplet gen-
eration method for triplet selection is adopted from [30].
Here, the triplets are chosen in such a way that the point
with maximum anchor and the positive distances and mini-
mum anchor and negative distances are chosen. In this se-
lection methodology, the hard positive and hard negative ex-
emplars are selected from within a minibatch. More details
about the loss and the triplet selection method can be found
in [30].

2.3. Deep Learning based Verification Systems

To prove the utility of our framework, we have used a
simple MLP network [31] as our kinship verification sys-
tem, to identify kin and non-kin relationship using only
the extracted KinfaceNet features. MLP is the most basic
form of neural network often referred as “vanilla” neural
network [32]. It is a fully connected class of feedforward
artificial neural networks (ANNs). This paper focuses on
the feature quality and MLP is used here to illustrate how
comparable high accuracy can be achieved without training
any complex network for a prolonged time compared to the
other features commonly used in the domain of deep learn-
ing.

3. KinfaceNet Implementation & Methodology
In this paper, we have first proposed a simple KinfaceNet

feature extraction framework that utilizes transfer learning
from face recognition domain. Then the efficiency of the
features extracted using the proposed framework is com-
pared with the features of the framework without trans-
fer learning, as well as other commonly used features in
the deep learning based kinship verification works. The
methodology can be broadly divided into two steps, namely
feature extraction and kinship verification.

3.1. Image Alignment

The first step of our framework involves refactoring the
dataset folders in such a way that every dataset contains
multiple sub-folders, and each sub-folder contains a parent
and child image. Faces in each of these images are then
detected and aligned using MTCNN model [33, 34].

3.2. Feature Extraction

Feature extraction using proposed framework contains
three main components. They are discussed in detail in this
section.

3.2.1 Input Triplet

This is a set of three images, namely anchor, positive and
negative. The images are chosen in such a way that in a
triplet image input the anchor and positive images are taken
from the same family, say the ith family, and the negative
image is a random image from any other family, say the jth
family, and i ̸= j. This input triplets are chosen using a
triplet selection algorithm discussed in Section 2. Batches
of hard triplets are formed before every epoch.

3.2.2 Pre-Trained Model

In this part of the proposed framework, any efficient face
feature extractor models trained for face recognition sys-
tem that outputs a feature vector can be used. In this work,
a pretrained Resnet34 model is used. It has a face recog-
nition accuracy of 98.45% on the LFW dataset [35]. Any
other state-of-the-art model can be used as well. The ini-
tial weights for our framework model are transfer learned
from the pre-trained model. If any other face feature extrac-
tion model is used, then the framework model architecture
should be same as the pre-trained model, so that the initial
weights can be transferred.

3.2.3 Triplet Loss and Training

As discussed in Section 2, at the beginning of every epoch
a batch of triplet inputs are selected. At every epoch, the
framework model, is used to extract 512D feature vector
from each input triplet, i.e., anchor, positive and negative.
From these batch of input triplets, a unique type of loss
called Triplet Loss is calculated using Equation (1). This
loss is then propagated back through the network.

3.3. Kinship Verification System

To determine the efficiency of our proposed framework,
a simple Multi-Layer Perceptron (MLP) network is used.
The purpose of the verification system is to determine kin
or non-kin relationship between two test images using only
the extracted face features. For comparison, we have used
features extracted using three deep learning models: 1) pro-
posed framework without transfer learning: a Resnet34 net-
work trained from scratch on kinship dataset without trans-
fer learning; 2) the pre-trained face feature extractor model:
a Resnet34 network trained on glint360k dataset; and 3)
proposed framework with transfer learning: a Resnet34 net-
work trained on glint360k dataset, further trained on kinship
dataset. The other features used for comparison are LBP,
full face image, and parts of face image (eyes and nose).



The dlib package is used to extract the boundary landmark
points for eyes and nose. Mean and standard deviation were
calculated from the extracted pixel values for each feature
set, reducing input dimensions and chances of underfitting.
For each case, features extracted from two test images are
passed through the trained verification systems and the test
accuracy is noted. For our verification system, the two fea-
ture vectors are concatenated into a single vector. For un-
equal length vectors like pixels of eyes and nose, mean and
standard deviation are used as features of the feature vec-
tor. This vector is given as input to an MLP model with two
hidden layers, with 512 and 256 nodes respectively, which
returns a 1-dimensional binary output, where 0 represents
non-kin and 1 represents kin.

4. Datasets
4.1. Family-in-the-Wild

This is the largest and most comprehensive dataset avail-
able in kinship literature [28,36]. FIW is made up of 11,932
natural family photos of 1,000 families. It has 656,954 im-
age pairs split between the 11 relationships, starting from
the primary kin relationship of parent and child to secondary
kin relationship like grandparent and grandchild. Since kin-
ship properties are most prominent amount the four primary
kin relationship of parent and child, as mentioned in Sec-
tion 2. In this work, we have worked with only these four
parts for ease of comparison and kinship cue identification.
For this dataset, the train/test split for verification accuracy
is adopted from [37]. Although this dataset is of the largest
size, the quality of the images is not good enough. Hence, in
the current works done in the kinship verification domain,
the accuracy obtained on the FIW dataset is much worse
compared to the KinfaceW dataset.

4.2. KinfaceW

This is another popular in-the-wild kinship dataset used
in kinship verification literature [8, 38]. There are mainly
four primary kin relations in the two datasets, as mentioned
in Section 2: Father-Son (F-S), Father-Daughter (F-D),
Mother-Son (M-S), and Mother-Daughter (M-D). There are
mainly two subgroups, namely KinfaceW-I and KinfaceW-
II. The difference of KinFaceW-I and KinFaceW-II is that
face images with a kin relation were acquired from different
photos in KinFaceW-I and the same photo in KinFaceW-II
in most cases. In the KinFaceW-I dataset, there are 156,
134, 116, and 127 pairs of kinship images for these four
relations. For the KinFaceW-II dataset, each relation con-
tains 250 pairs of kinship images. These datasets contain
images collected from the internet, including some public
figure face images and their parents’ or children’s face im-
ages. Face images are captured under uncontrolled environ-
ments in two datasets with no restriction in terms of pose,
lighting, background, expression, age, ethnicity, and partial

Table 2. Resnet34 models used to compare the extracted kinship
features. The proposed framework model is M3.

Model Name Epochs Pre-trained
Model used

KinfaceNet without Pre-trained (M1) 150 No
Pre-trained Face Feature Extractor (M2) 0 Yes

Proposed Transfer-Learned KinfaceNet (M3) 60 Yes

occlusion. The train, validation and test splits taken as 80%,
10%, and 10%.

5. Experiments and Results
5.1. Experiments for Kin Feature Extractor

In this paper, we have proposed an efficient kinship
feature extractor framework using a pre-trained ResNet34
model used in a face recognition system. The model with-
out transfer learning was trained for 150 epochs, but with
transfer learning the best model was achieved at 60 epochs
with no much change in loss after this. For each of these
training a batch size of 16, iterations per epoch is 1000,
number of human identities per batch is 16, Adagrad op-
timizer value of 0.075 is used. We have shown how higher
accuracy can be achieved at a lower training epoch if the
training is started from a trained facial feature extractor
model from face recognition domain. This is important in
the domain of kinship verification since the amount of bal-
anced training data is still not adequate to train models from
scratch. So, a solution should be devised, such that the data
requirement bottleneck can be addressed to some extent,
mainly by using transfer learning. We used a pre-trained
Resnet34 model [39]. This model is trained on glint360
dataset [40] trained for 90 epochs, is readily available, and
has high accuracy in a face recognition system. It takes
140X140 size image as input and outputs a 512D vector.
Any other pre-trained face feature extractor model used in
face recognition system can be used. This model is then
transferred in the domain of kinship by training on kinship
data using triple loss, as explained in Section 3.

The list of models used for evaluation can be found in
Table 2. We have also extracted features that are used in
previous deep learning based works, like LBP, full face im-
age, parts of face images, and face embeddings from face
recognition system for comparison. As mentioned in Sec-
tion 1 and 2, human eyes and nose contains the maximum
information hence we have used only these two parts. For
analysis and verification of these models, features are ex-
tracted from each of the datasets, i.e., FIW, KinfaceW-I, and
KinfaceW-II, and their distribution and verification results
are compared.

5.2. Extracted Kin Feature Distributions

This part of the experiments forms the main contribution
of the paper. In the framework, the experiments performed



Table 3. Equal Error Rate (EER) and Area Under Curve (AUC) values for the different features and datasets. TL=Transfer Learning
Model
Used

No. of Epochs
Trained

Pre-Trained
Model Used

FIW KinfaceW-I KinfaceW-II
EER AUC EER AUC EER AUC

LBP - - 0.47 0.5509 0.47 0.5279 0.39 0.6400
Full Face Image - - 0.44 0.5647 0.35 0.7109 0.43 0.6254

Parts of Face: Eyes - - 0.44 0.5853 0.30 0.7143 0.32 0.7422
Parts of Face: Nose - - 0.43 0.5833 0.31 0.7374 0.32 0.7127

M1(KinfaceW without TL) 150 No 0.36 0.6889 0.31 0.7891 0.09 0.9765
M2 (Pre-trained Face-Recognition model) 0 Yes 0.41 0.6277 0.36 0.6598 0.4 0.6350

Proposed M3(KinfaceW with TL) 60 Yes 0.35 0.7067 0.17 0.9090 0.07 0.9808

(a) KinfaceW1 M1:w/out Pre-trained Weights (b) KinfaceW2 M1: w/out Pre-trained Weights (c) FIW M1: w/out Pre-trained Weights

(d) KinfaceW1 M2: Pre-Trained Face Model (e) KinfaceW2 M2: Pre-Trained Face Model (f) FIW M2: Pre-Trained Face Model

(g) KinfaceW1 M3: Transfer Learned Model (h) KinfaceW2 M3: Transfer Learned Model (i) FIW M3: Transfer Learned Model
Figure 3. Euclidean distance distribution plots between Genuine (kin) vs Imposter (non-kin) pairs of images from subsets of different
datasets. Plots shows the distribution for our proposed method with and without kinship. (a), (b), and (c) are plots of proposed KinfaceNet
framework feature extractor without transfer learning (M1); (d), (e), and (f) are associated with a pre-trained face model without Kin-
faceNet; (g), (h), and (i) are plots of proposed KinfaceNet framework feature extractor with transfer learning (M3). M1 trained for 150
epochs and M3 trained for 60 epochs only.

in this part belong to the Feature Extraction section. The
features used in state-of-the-art methods like LBP, full face
image, parts of face image, as mentioned in Table 1, are ex-
tracted from the images of all three datasets. For the Face
Recognition feature we have used a pre-trained resnet34
network given in Table 2 as M2. The models M1 and M3

are the proposed framework models with and without trans-
fer learning respectively. Features are extracted using these
two models as well. All these feature distributions are then
compared using biometric score distribution analysis. To
plot the genuine vs. imposter distribution, a popular plotting
method used in biometrics to visualize the feature space, the



distance between a parent and a child is considered a gen-
uine score and the distance between two images of differ-
ent families is considered an imposter score. Euclidean dis-
tance is used for score evaluation. Score distribution plots
are evaluated for each and every type of feature for the same
subset of each of the dataset. This subset is taken from the
test set and is not used in training. The genuine (kin) vs. im-
poster (non-kin) distribution plots for our proposed frame-
work features, with and without transfer learning, as well
as, features from the pre-trained network(M2) are shown
in Figure 3. The Equal Error Rate (EER) and Area Under
Curve (AUC) values for all the features, including the state-
of-the-art features, mentioned in Table 1 are given in Table
3. These parameters help in determining the quality of the
features.

In Figure 3, the first row provides the score distribution
for the model trained from scratch (M1), i.e., no transfer
learning from face recognition model is used. A resnet34
model is trained from scratch on the kinship datasets FIW,
KinfaceW-I and KinfaceW-II separately. The last row
shows the score distribution for the embeddings extracted
using our proposed framework (M3). The middle row
shows how the distribution looks for M2, i.e., just a pre-
trained network, which is very common in state-of-the-art
methods. Unlike face recognition systems, in kinship prob-
lem the genuine scores are from different people sharing
the kinship traits. Still the score distribution clearly shows
a separation between the genuine or kin pairs and imposter
or non-kin pairs for all the three types of models for each
dataset. But the distribution is maximally separated for our
proposed technique (M3), indicating that the KinfaceNet
extracted features contains the maximum kinship informa-
tion when trained for the same number of epochs as M1.

Table 3 provides similar observation where the error rate
for our proposed model is minimum and AUC is maximum
compared to model M1 and M2 for each and every dataset.
The EER and AUC values for the proposed kinfaceW fea-
tures are much better than the state-of-the-art features too.

5.3. Verification Accuracy of Extracted Features

This set of experiments show the performance of the ex-
tracted features on a simple MLP based verification system
after 20 iterations. The best verification model may be dif-
ferent for different features. Since the input features are dif-
ferent, for comparison purpose we have used the same MLP
network with similar parameters as the verification system,
except for the input size. For dissimilar sized input vec-
tors like pixel values of eyes or nose, the mean and standard
divisions are used as features of the input feature vector.
Any other state-of-the-art verification systems can be used
in place of MLP. But the verification accuracy achieved us-
ing a simple MLP network by the features extracted us-
ing our framework is higher than most of the deep learning

based state-of the art complex networks. Thus, it is shown,
if we can take advantage of transfer learning, training can be
reduced to a huge extend and comparable accuracy can be
achieved even if there is limited balanced data like kinship.
Deep complex network training from scratch is not always
the best solution, if we can take advantage of the existing
trained networks. Thus, even with limited access to GPUs
and large datasets, one can achieve comparable accuracy in
the domain of kinship.

In Table 4, an exhaustive search for best training and test-
ing feature is done in terms of verification accuracy using a
2-layer MLP network with 512 and 256 hidden nodes re-
spectively. Accuracy is computed for features used in state-
of-the-art deep learning systems as well as our proposed
framework features for all the three datasets. A total of 63
experiments are performed. The most important observa-
tion in the table is that our proposed KinfaceNet extracted
features have higher verification accuracy for both inter as
well as intra dataset systems. The intra-dataset verification
accuracies are the ones where an MLP model is trained and
tested on the same dataset, whereas the inter-dataset veri-
fication accuracies are the ones where the MLP model is
trained on one dataset and tested on a different dataset. The
purpose of experimenting on the inter dataset is to check
for which features the bias due the image properties is min-
imum. For example, in KinfaceW-I dataset, the kin pairs
are extracted from the same family photo. So, a high inter
dataset accuracy on KinfaceW-I dataset but very low intra
dataset accuracy may show that the model is learning the
non-kinship properties of the image as well. In the table the
intra dataset accuracies for each type of features are marked
in bold. The red color represents the highest intra-dataset
accuracies observed. For all the three datasets the highest
intra as well as inter dataset accuracy is observed using our
proposed framework. Our framework without the transfer
learning model, i.e., M1, failed to show such high accuracy
in 150 epochs. The accuracies are even lower than using a
pre-trained network.

Another notable observation is that the verification ac-
curacy of our proposed framework features using a simple
MLP network in the 20th epoch is much higher than the
deep learning based state-of-the-art verification accuracies
using features like LBP, face image, parts of face image,
face recognition embedding as given in Table 1. In future,
we plan to develop a verification system, which can help
understand the features better and improve the accuracies.

5.4. Discussion

In this paper, we have proposed a framework, which is
faster to train, better in performance and has many appli-
cations. The main advantage of this framework is that it
can blend in any trained model from its parent face recogni-
tion domain and transfer the weights from the trained face



Table 4. Intra and Inter dataset Kinship Verification accuracies af-
ter 20 epochs of training a simple Multi Layer Perceptron network
on the FIW, KinFaceW-I and KinFaceW-II datasets. LBP, Full
face, parts of face(eyes and nose) and feature extracted using M2
are the features used in state-of-the-art deep learning based kinship
verification. M3 is our proposed framework and M1 is proposed
framework method without transfer learning.

Features Datasets
(Test)

FIW
(Train)

KinFaceW-I
(Train)

KinFaceW-II
(Train)

LBP FIW 50.22 48.88 48.88
KinFaceW-I 54.54 58.44 51.94
KinFaceW-II 49.65 62.75 61.37

Full Face FIW 52.08 51.66 50.00
KinFaceW-I 54.48 60.45 58.18
KinFaceW-II 49.65 54.90 52.23

Parts of Face: Eyes FIW 50.22 56.44 58.22
KinFaceW-I 54.54 62.33 63.63
KinFaceW-II 49.65 71.03 68.96

Parts of Face: Nose FIW 50.22 51.11 57.77
KinFaceW-I 54.54 68.83 70.12
KinFaceW-II 49.65 66.89 71.03

KinfaceNet (M1) FIW 52.92 50.00 50.00
KinFaceW-I 41.50 70.78 53.93
KinFaceW-II 56.00 50.00 85.00

Pre-trained face recognition model(M2) FIW 59.58 59.58 63.69
KinFaceW-I 68.53 68.53 50.56
KinFaceW-II 59.50 58.50 63.00

KinfaceNet (M3) FIW 69.16 65.00 64.16
KinFaceW-I 62.92 75.28 66.29
KinFaceW-II 73.00 80.50 88.00

recognition model, thus reducing the overall training time.
Since, face recognition is a popular field, a plethora of such
face feature extracting models are already available. Not
only time complexity, another major necessity of the trans-
fer learning technique in kinship recognition domain is to
address balanced data shortage bottleneck. There are very
few large kinship datasets, and none of the datasets have
balanced kin and non-kin data. Our framework has proven
to be better in performance than most of the state-of-the-art
methods, even using a simple MLP verification system. In
future, we plan to explore other complex verification sys-
tems to achieve higher accuracy. With the advent of face
feature extractor in the face recognition domain, similar
trend was observed.

While most of the work in the kinship domain is focused
only on face verification, our work is focused on solving a
bigger set of problems along with kinship verification. A
set of applications are as follows:

1. Kinship Verification, Finding missing /trafficked
/smuggled family members and children. Kinship ver-
ification can be useful in cases of missing elderly people
with reduced cognitive capabilities, as well as in kidnap-
ping cases. Also, in cases of human tracking, if a person
is discovered many years after their disappearance, then
it may help in reuniting with parents.

2. Implementing new consumer product features. To-
day, technology has come to a point where a camera can
focus on only the humans faces and blur the rest. In the
future, a camera that can focus on family faces rather
than other faces in the background in group photos may
be developed. Also, software and social robots may be
able to distinguish family members from impostors.

3. Document tagging. Identifying people and their rela-
tionship from images has significant social and business
values. It can provide a useful tool in social media clus-
tering and analysis, similar trait categorization, etc.

4. Forensics, historical, and genealogical research. Al-
though modern biological measures are available, most
of them are inapplicable on a large scale. For example,
DNA testing is widely used in paternity and crime scene
investigations, but the tedious process takes days to gen-
erate results and is expensive. As discussed above, there
is significant correlation between regions of DNA and
facial features [1–3]. Our proposed framework proposes
a simple way to amplify such cues, thus improving veri-
fication accuracy.

5. Generating kin images. Nowadays, unsupervised
GAN-based models have helped in generating high qual-
ity synthetic facial images. The age, gender and demo-
graphics can be varied in the generated synthetic images
by playing with the traits in the facial feature vector re-
sponsible for a particular soft-biometric. Kinship is one
such trait which is present in all these facial feature vec-
tors used in face recognition, but still needs to be ex-
plored to a large extent for better accuracy.

Our proposed feature extractor will be particularly helpful
in generating the kin synthetic images and forensics, as sim-
ilar trend is observed in its parent domain. In future, we plan
to explore each of these domains using our extracted feature
space.

6. Conclusion
This paper proposes a fast, better performing kinship fea-

ture extraction framework. The framework can blend in any
trained face recognition model from its parent domain face
recognition, and hence does not need prolong training or
huge face dataset. This method also helps in addressing im-
balanced dataset problem in kinship domain. Further, the
independent kinship feature vector has a plethora of util-
ity in different research domains. The trained models also
provided high intra- and inter-dataset verification accura-
cies for the different datasets, even using a simple verifica-
tion network. In future, many different applications of the
representation of kinship cues as feature vector shall be ex-
plored.
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