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Abstract—Side-channel analysis poses a threat to security-
critical systems, enabling attackers to exploit the unintended
information leakage. To mitigate its effect, masking serves as a
provably-secure countermeasure by segmenting computation into
random shares. Existing work on optimizing building blocks of
modern masked circuits, called gadgets, has primarily focused
on latency, with area and power as secondary objectives. To
the best of our knowledge, the most up-to-date ASIC-specific
masking gadget optimization frameworks require significant
manual effort. This paper is the first to reintroduce technology
mapping, retiming and functionally-reduced and-inverter graphs
(FRAIGs) in the electronic design automation process (EDA) to
attempt to optimize and improve existing gadgets and overall
designs. In this regard, we aim to enhance gadgets in terms of
the power, performance, and area (PPA) metrics. The primary
objective is to leverage compatible gates from a technology
library to generate an optimized and functional design without
compromising security, and latency. Our results show 59% and
57% reduction in power consumption and area respectively when
compared to naı̈ve synthesis of masked designs.

Keywords—Side-channel Analysis; Hardware Masking; EDA;
Optimization.

I. INTRODUCTION

Side-channel analysis (SCA) has been studied extensively
for over two decades since the seminal work introduced its
devastating impact on security-critical implementations cf. [1].
The fundamental premise of SCA is that an adversary can
observe and measure physical effects to extract sensitive in-
formation during execution, where one of the common types of
measurements is power consumption and its close counterpart,
electromagnetic (EM) emanation [1], [2]. Different classes
of countermeasures have also been developed with masking
being predominantly studied thanks to its formal and sound
security foundation [3]. Masking schemes can be likened to
techniques of secret sharing, where confidential values are
randomly decomposed into shares. Operations on these shares
are executed to meet a specific security criterion.

Despite the continuous effort to improve the efficiency
and security of hardware masking schemes, inaccuracies and

design flaws have often resulted in their failure. In this
regard, unintentional physical effects, e.g., glitches, transitions,
or coupling, and architectural conditions (parallelism and
pipelining, for instance) account for the insecurity of physical
instantiation of masking scheme regardless of their sound
theoretical security proofs [4]. As a response to this, masking
of small components, so-called gadgets, has been introduced to
ease the burden of such enormous engineering and error-prone
tasks [5]. One key aspect is the secure composition of gadgets
known to be a non-trivial problem relying on security notions
and properties; for instance, probe-isolating non-interference
(PINI) that enables efficient and secure compositions with
respect to multi-input, multi-output gadgets and trivially secure
linear operations, i.e., XORing [6]. Taking these important
steps toward designing masked hardware circuits has turned
the page and allowed for open-source tools that help engi-
neers and hardware easily generate masked hardware circuits,
starting from a simple but unprotected design.

As a prime example, AGEMA [4] transforms unprotected
cryptographic designs into securely masked circuits using
different masked gadgets as fundamental building blocks.
It explores different processing techniques to achieve this
transformation and supports masked gadgets to offer high
flexibility concerning the security level, required randomness,
latency, and area overhead. Building upon this, generic hard-
ware private circuits (GHPC) gadgets have been devised to
provide a generalizable and automated approach to designing
secure, efficient, and trivially composable gadgets for arbi-
trary Boolean functions [7]. Afterward, [8] has demonstrated
improvements by manual optimization in AGEMA. In doing
so, the latency in AES S-box implementations, especially for
serial implementation, is reduced by 6×. An added benefit
to their method is reduced area consumption due to changes
in the number of registers. This line of research has been
followed by proposing masked nonlinear components with
improved performance [9] due to latency asymmetry.
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Fig. 1. Diagram of the DOM implementation and its use in the HPC 1 gadget whereas HPC 2 and HPC 3 do not utilize the DOM gadget. Here, x, y, and z
represent input and output while r and share 0 represent the refresh bits. The subscripts represent the shares and the superscripts represent different refresh
bits (see Sec. II and IV).

Opportunities for optimization have arisen to improve cer-
tain aspects of gadgets without disrupting the secure state.
The study [10] has proposed a security-focused design-space
exploration framework that utilizes commercial CAD tools; it
analyzes the security-versus-PPA design-space across multiple
technology nodes with all their voltage threshold cell options.
This provides a better understanding of the relationship be-
tween standard cells and static power side channel vulnera-
bility. A very recent tool, AGEMA FPGA, was introduced as
an automated framework for transforming unprotected FPGA
netlists into optimized masked designs aligning with the PINI
notion [11]. Compared to AGEMA, it achieves up to 22%
fewer registers, up to 64% fewer LUTs, and up to 59%
less power consumption while verifying their side channel
resilience.
Our contributions. This paper narrows the gap between
the theory and practice of masked gadgets by introducing a
completely open-source tool (GitHub link will be added after
acceptance) to optimize masked gadgets on ASIC, contrary
to AGEMA FPGA. In fact, while AGEMA is devoted to
ASIC applications, our framework highlights the significant
room for streamlined optimization of gadgets. Despite the fact
that masked gadgets can be optimized using existing ASIC
EDA workflow, our paper provides insights into how less
careful application of that can result in side-channel leakage
in the masked gadgets. In a nutshell, our contributions are:
leftmargin=*,nosep

• An EDA flow for efficient and automated design of
provably secure composable masked gadgets. Extensive
experiments are done on a wide range of existing gadgets
to demonstrate a more area-efficient and less power-
hungry design without compromising security or latency.

• Completely open-source design and security verification
through publicly available tools. In this regard, stream-
lined masked design synthesis is performed by leveraging
the open-source ABC tool and its FRAIG implementation
to perform technology mapping.

• Retention of side-channel security confirmed by the state-
of-the-art approaches while showing promising applica-
tions to different technology nodes. As a result, our
framework can be seen as an essential add-on to the
classical EDA flow to guarantee the security of masked

gadgets.

II. MASKING-RELATED MODELS AND TOOLS

Boolean masking. In essence, the goal of a masking scheme
is to ensure security at an established order d, under assump-
tions concerning the leakage behavior of the targeted device.
A prevalent approach to masking is Boolean secret sharing,
which uses binary addition to distribute sensitive data. In this
context, a secret variable x ∈ GF (2m) is split into d+1 shares
(x1, . . . , xd+1) with the property x =

⊕d+1
i=1 xi. Uniformity

is assured by selecting shares x1, . . . , xd from a uniformly
random distribution and determining xd+1 = x ⊕

⊕d
i=1 xi

(known as the correctness property). Although a range of
Boolean secret-sharing methods has been discussed in previous
works, our discussion will center on domain-oriented masking
as described in [12].

An example of DOM applications, namely DOM multiplica-
tion, is shown in Fig. 1. Initially, cross-product calculations are
performed, with randomness introduced to specific products.
Precisely, for a first-order security level, the following is
derived [13]:

p1 = x1y1, p2 = x1y2 ⊕ r1, p3 = x2y1 ⊕ r1, p4 = x2y2.
(1)

Subsequently, the terms pi from Eqn (1) are stored in a register
and then proceed to a compression phase. Here, the (d+ 1)2

shares are transformed to (d + 1) shares for the output zi.
For example, z1 = p1 ⊕ p2 and z2 = p3 ⊕ p4. DOM multi-
plication requires independent input shares and necessitates an
additional clock cycle in the compression layer [12], [14], [15].
Nonetheless, the DOM multiplier remains a frequently adopted
masking scheme, with its security rooted in the independent
power usage of its constituent functions.
Security models. In d-probing model, the security concerns
the adversary, granted the ability to observe the distribution
over up to d wires of a given circuit. This should not disclose
anything about the processed secret value x [16].

Strong non-interference (SNI) and non-interference (NI)
consider the composition of masked circuits, usually as com-
positions of gadgets. Concretely, in NI-compliant circuits,
security spans across the composed circuit instead of isolated
gadgets only cf. [7]. Roughly speaking, the flow of sensitive
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Fig. 2. Summary of framework for mask gadget optimization presented in
this paper.

information within the circuit is limited; however, the adver-
sary is still allowed to gain partial information on d internal
values and wires. Probes give the adversary access to partial
information that could have been solely observed by placing
more than d adversarial probes (i.e., probe propagation). In
order to tackle this, if SNI is fulfilled, probe propagation is
stopped at the primary output of gadgets, which limits the
partial information accessible to the adversary. Although SNI
reflects the need for secure composition of gadgets, its purpose
is limited to single-output gadgets only as it does not scale for
multi-output gadgets due to probe propagation cf. [6]. PINI
has been introduced to meet this need, where share domains,
similar to DOM, are introduced, and any probe is restricted
to only propagate within its own share domain. In addition
to supporting multi-output gadgets (unlike SNI), PINI enables
the trivial implementation of linear functions.
Gadgets. The research on designing gadgets has particularly
focused on non-linear gates, with the AND gate receiving ex-
tensive attention. Among the developed gadgets, the Trichina
AND gate [17], the Ishai, Sahai, and Wagner (ISW) AND gate,
as well as ones that satisfy PINI, SNI, and NI [6] probing
models, are the most noteworthy. The Trichina AND [17]
ensures security at the gate level for λ = 1, indicating security
against a single probe. It is specifically designed to manage
two 2-share inputs, which is critical for its security assur-
ances. The ISW AND [16] lays the foundation for threshold
implementations, providing a robust basis for crafting higher-
order protection schemes. This gadget applies to the circuit
level, incorporating the gadget composition and scalability
for multiplication computation, which is particularly useful in
AES implementations.

III. METHODOLOGY

Our framework is designed to be seamlessly integrated into
the ASIC-focused EDA framework, specifically for masked
designs. We automate the process using a shell script where
program calls are made sequentially, with each stage producing
and reading inputs in a streamlined manner. The commands
used for each tool are described throughout this section.

The input benchmark is the result of the high level synthesis
stage of the EDA process. The register transfer level (RTL)
design has to be verified for side-channel resilience using
VERICA [18] (see Fig. 2). Apart from verification capabilities
encompassing SCA or fault attacks (FA), VERICA promi-

nently employs the probing models introduced in Sec. II,
making it especially suited for verifying masked designs. The
verified design initialises the entire framework with logic
synthesis via Yosys [19].

A. Yosys for BLIF Conversion

Yosys is designed for RTL design and synthesis tasks within
both standard cell mapping and FPGA EDA frameworks.
One notable feature of Yosys is its ability to handle the
conversion of designs from Verilog to other benchmark repre-
sentations such as Berkeley Logic Interchange Format (BLIF)
and Electronic Design Interchange Format (EDIF). For our
optimization task, Yosys converts Verilog to BLIF, aligning
the input with the requirements of ABC [20] in the next step.
BLIF ensures the retention of ports, input shares, and output
shares of the masked gadgets.

B. ABC for Optimization

While ABC provides logic optimization capabilities, its
simple design allows different circuit-based applications to be
built on its framework [20]. It is the crux of our proposed
framework, and the modified technology mapping process
shown in Fig. 2 is built around its requirements and capa-
bilities.

1) Technology Mapping: The process entails transforming
a technology-independent optimized logic netlist into a rep-
resentation using predefined gate layouts from a technology
library [21]. The primary role of technology mapping is to
intelligently choose gates for implementing the logic netlist.
The technology mapping process we leverage via ABC is a
direct acyclic graph (DAG)-based method that enables the
identification of the best-fit standard cells [20]. The default
library provided with the ABC package is the NanGate 45nm
library. However, we modify the library to utilize only AND2,
BUF, CLKBUF, INV, NAND2 NOR2 and OR2 gates. This is
essential for compatibility with VERICA.

2) FRAIGs: FRAIG allows for the functional representation
of networks via improved technology mapping using multiple
structural choices [22]. Overall structures and substructures
for a single network can be preserved and retrieved based
on design requirements using the FRAIG manager [20].
We target the FRAIGs ability to use structural information
from technology-independent synthesis to provide choices
during technology mapping. We utilize the FRAIG manager
to sweep through possible options and evaluate multiple

Yosys | Conversion | BLIF

ABC | Optimization | Verilog

Design Compiler | Translation | Verilog

VERICA | Verification | txt

EDA

Evaluation

Fig. 3. Details of tools used in order of application, purpose and output. The
tools are divided into either EDA-based optimization or security evaluation
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designs. The commands we send to ABC are: fraig,
map, fraig_sweep. Cycling through various choices from
the FRAIG, we continue until we identify either the best-
optimized and functional candidate or revert to the original,
verified masked input.

3) Retiming: Retiming is a technique used in digital cir-
cuit design and optimization to improve the performance of
synchronous digital circuits by adjusting the placement of reg-
isters (flip-flops or latches) within the circuit without changing
its functionality [23]. The goal of retiming is to strategically
move these registers to different locations within the circuit
while maintaining the same logical behavior. Retiming only
rearranges the registers to improve timing characteristics [23].
For this, we add the following command to our original ABC
set: retime. However, the success of retiming depends on
the specific characteristics of the circuit, and in some cases,
it may not always lead to significant improvements. This
is documented in Sec. IV. The design post-ABC is sent to
Synopsys Design Compiler for translation into a VERICA-
friendly format without further optimization.

C. Synopsys Design Compiler for Translation

Design Compiler [24] is a powerful tool offering constraint-
driven synthesis and optimization for various design styles. We
utilize Design Compiler for two purposes: Firstly, it “trans-
lates” designs obtained in Verilog from the ABC technology
mapping process into a useable format for VERICA (Fig. 3). In
addition to netlist “translation”, Design Compiler offers post-
synthesis power, area, and timing reports. These reports are
crucial for validating the efficacy of the optimization process.

D. Security Verification using VERICA

The final benchmark is assessed using VERICA [18] again;
an ideal result satisfies optimization while retaining its original
security characteristics whereas an unsuccessful design flags
the tool chain to present the second variant retained in ABC’s
FRAIG manager. Our entire framework will cycle through all
options and verify until a suitable candidate is produced. In the
absence of the latter, the original design is simply synthesized,
flattened and produced as the optimum result. The FRAIG
implementation also allows us to automatically perform formal
verification between the input design and its optimized variant.

IV. EXPERIMENTS AND RESULTS

The benchmarks utilized in our experiments were obtained
from the open-source AGEMA case studies [4]. Moreover,
to assess the framework’s viability on larger designs beyond
gadgets, we focus on specific implementations of the AES
and PRESENT ciphers. For larger AES and PRESENT bench-
marks, we found that designs from the PROLEAD [25] exam-
ple set were easier for both the naı̈ve and optimized tool sets to
successfully parse and synthesize. To assess the side channel
resilience after the optimization, we employ a locally-installed
version of VERICA [18] tool to check for adherence to the
PINI probing model. In the execution of our framework, all
tools were used within a dedicated Linux-based environment

available to collaborators. To streamline the experimental pro-
cess, we developed a shell script to automatically run each tool
when required. Additionally, we wrote Python-based programs
to generate annotation and configuration files workflow.

For translation/synthesis with Design Compiler, we relied
on the open-source NanGate 45nm Design Library. Although
we sought to use other libraries, NanGate emerged as the sole
option compatible with VERICA. This point is particularly
significant since our overarching goal is to seamlessly integrate
the masking process into the EDA pipeline.

A. Benchmarks

HPC. It is a specialized type of private circuit designed
for the hardware, which is glitch-resistant and enables trivial
composition at arbitrary orders introduced in [26]. They have
presented a set of glitch-robust PINI gadgets that improve
on the DOM multiplier. For example, the HPC1 gadget is
based on the refresh-then-multiply technique where a glitch-
robust refresh is added to the DOM to make it a glitch-robust
PINI gadget. We have used HPC1 and HPC2 [26], as well as
HPC3 [27] for our experiments (see Figure 1).
COMAR. Composable Gadgets with reused fresh masks (CO-
MAR) gadgets are a set of hardware gadgets that enable the
construction of arbitrary first-order-secure hardware imple-
mentations in the d-probing model under glitches, utilizing
only 6 fresh random bits in total [28]. They offer security
and free composability in the glitch-extended robust d-probing
model for d = 1, while minimizing the randomness require-
ments and design-error susceptibility.

B. Retiming vs Non-retiming

Retiming seemingly yields varied results across all use
cases. In the case of HPC1, the difference in optimization val-
ues is minimal. However, for HPC3 and COMAR gadgets, the
retimed versions generally exhibit higher overhead compared
to their non-retimed counterparts (see Tab. I). Conversely,
HPC2 gadgets demonstrate a significant difference in levels
of optimization, possibly attributed to the distinct methods of
construction for each gadget. The key to achieving consistent
optimization results from retiming may lie in adopting a more
nuanced and controlled approach.

C. Power Optimization

The primary focus of power in this paper is dynamic power,
which specifically addresses the consumption during switching
activity [29]. While not explicitly documented in this paper,
we are also capable of reporting leakage power using Design
Compiler for each gadget used in the experimentation process.
Fig. 4 highlights observable differences between the naı̈ve and
optimized masked designs. The COMAR gadgets reported in
Fig. 5 exhibit minimal change in dynamic power dissipation
for both retiming and non-retiming methods. This is because
COMAR gadgets have a constant number of random bits that
already optimizes their randomness requirements, circuit sizes,
and power requirements [28]. However, the HPC2 and HPC3
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Fig. 4. Comparison of power and area improvements of naı̈ve (NO), Optimized with Retiming (ORE), and Optimized without Retiming (ONRE) methods
for HPC1 (a, d), HPC2 (b, e) and HPC3 (c, f) gadgets

a)

b)

Fig. 5. Comparison of power (a) and area (b) improvements of naı̈ve (NO),
Optimized with Retiming (ORE), and Optimized without Retiming (ONRE)
methods for COMAR gadgets. The MUX gadget cannot be parsed by Design
Compiler after optimization with retiming, hence the empty slots for both
graphs.

gadgets consistently show improvement in power consump-
tion. As seen in Table I, HPC3, demonstrates a maximum
improvement of over 59%, representing the best-case scenario.

D. Area Optimization

The trend of area optimization aligns with the improved dy-
namic power values, as illustrated in Fig. 4. The HPC designs

demonstrate room for significant optimization opportunities.
While area is notably dependent on the standard cell library
and its features, it is not unreasonable to expect that the trend
would persist with other versions. In the grand scheme of
digital design, it may not hold particular relevance. However,
optimized area values for masked gadgets help mitigate the
inevitable area overhead introduced by the employed masking
scheme while guaranteeing side channel resilience.

E. Timing Optimization

In masked gadget optimization frameworks, timing im-
provements specifically focus on latency [8]. Latency improve-
ments reduce the number of timing cycles required to generate
a masked output in the presence of registers and flip-flops.
The design reports from the Synopsys Design Compiler show
marginal or no changes in delay. The current implementation
also strives to maintain latency without compromising security.
Latency optimization would significantly improve our frame-
work, and will be explored in future work.

F. PINI-security

PINI security remains reasonably consistent throughout the
use of our optimization framework. There are instances in the
design when benchmarks cannot be translated by the Design
Compiler due to corrupted ABC output. The MUX COMAR
gadget is one instance of a design that cannot be translated
by the Design Compiler, specifically after optimization with
retiming. We attribute this to the repositioning of registers
during the retiming process. We also observed that for the
naı̈ve experiments, designs from the HPC2 and HPC3 set
could not be parsed by VERICA. It is noteworthy that our
framework, for both non-retiming and retiming optimization
methods of HPC2 and HPC3, are parsed successfully in
VERICA, and are PINI secure. This can be may be considered
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TABLE I
AVERAGE, MAXIMUM AND MINIMUM PERCENTAGE CHANGES TO DYNAMIC POWER AND AREA CONSUMPTION FOR COMAR AND HPC GADGETS

COMAR HPC1 HPC2 HPC3
ORE ONRE ORE ONRE ORE ONRE ORE ONRE

Average Power 3.49 -1.67 -7.16 -7.66 -43.84 -34.41 -51.74 -52.14
Area 2.10 -1.92 -7.74 -7.90 -42.91 -35.63 -52.77 -53.49

Max Power 6.67 0.05 0.25 -5.55 -43.50 -31.95 -45.52 -45.85
Area 4.42 0.00 -2.65 -5.45 -42.84 -33.73 -47.73 -46.04

Min Power -3.42 -11.27 -11.98 -8.84 -44.37 -42.38 -59.83 -53.81
Area -2.53 -13.43 -9.94 -9.29 -43.03 -43.03 -57.91 -55.45

as an added benefit of our framework. However, the naı̈ve
process also reveals a loss of PINI security for AND2 and
MUX HPC1 gadgets. Despite these instances, our method
overall successfully maintains PINI security. Future work will
explore the specific issues causing corrupted ABC output
during benchmark translation, as well VERICA’s inability to
parse certain designs

V. CONCLUSION AND FUTURE WORK

In this article, we present evidence supporting the viability
of technology mapping, FRAIGs, and potentially retiming, for
the optimization of masked gadgets. Our framework reveals
that the ASIC-focused optimization process can be embed-
ded into the EDA pipeline, specifically for masked designs.
Although larger implemented designs, such as AES and
PRESENT, may not show direct improvements, the success
of smaller gadgets suggests the possibility of pursuing a more
nuanced and intelligent approach to gadget optimization. Our
forthcoming efforts will involve the aforementioned while
attempting higher security orders and incorporating improved
gadgets into larger benchmarks. Additionally, we highlight its
extension to FPGA synthesis and optimization, with reference
to the work presented in [11].
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