
DOSCrack: Deobfuscation Using Oracle-guided
Symbolic Execution and Clustering

of Binary Security Keys
Jiaming Wu

University of Florida
jiaming.wu@ufl.edu

Olivia Dizon-Paradis
University of Florida

paradiso@ufl.edu

Sazadur Rahman
University of Central Florida
mohammad.rahman@ucf.edu

Damon Woodard
University of Florida
dwoodard@ufl.edu

Domenic Forte
University of Florida
dforte@ece.ufl.edu

Abstract—Design-for-test/debug (DfT/D) introduces scan chain
testing to increase testability and fault coverage by inserting scan
flip-flops. However, these scan chains are also known to be a
liability for security primitives. In previous research, dynamically
obfuscated scan chains (DOSC) were introduced to protect logic-
locking keys from scan-based attacks by obscuring test patterns
and responses. In this paper, we present DOSCrack, an oracle-
guided attack to de-obfuscate DOSC using symbolic execution
and binary clustering, which significantly reduces the candidate
seed space to a manageable quantity. Our symbolic execution
engine employs scan mode simulation as well as satisfiability
modulo theories (SMT) solvers to reduce the possible seed
space, while obfuscation key clustering allows us to effectively
rule out a group of seeds that share similarities. An integral
component of our approach is the use of sequential equivalence
checking (SEC), which aids in identifying distinct simulation
patterns to differentiate between potential obfuscation keys.
We experimentally applied our DOSCrack framework on four
different sizes of DOSC benchmarks and compared their run-
time and complexity. Our research effectively addresses critical
vulnerabilities in scan-chain obfuscation methodologies, offering
insights into DfT/D and logic locking for both academic research
and industrial applications. Our framework emphasizes the need
to craft robust and adaptable defense mechanisms against scan-
based attacks.

Index Terms—logic locking, scan-based attack, clustering,
symbolic execution

I. INTRODUCTION

Scan-based testing is a commonly practiced design-for-test
(DfT) scheme that facilitates the detection and diagnosis of
faults in integrated circuits (ICs) because of its high con-
trollability and observability [1]. By replacing registers with
scan flip-flops and connecting them into scan chains, DfT
allows access to internal nets and assists in the extraction of
register values in sequence. DfT and scan chain architectures
are integral components that contribute significantly to the
efficiency and effectiveness of IC testing processes and yield
improvement. For example, in the pre-silicon design of IC,
Synopsys Tetramax [2] is popularly used for automatic test
pattern generation (ATPG) and silicon testability analysis,
which automates the process of generating test patterns to
test digital ICs for potential defects. In post-silicon testing,
the JTAG [3] and Nexus standards are widely adopted, us-
ing ATPG test patterns to perform boundary scan tests and
debugging.

By increasing controllability and observability, scan flip-
flops also introduce weaknesses to scan-based attacks. Scan-
based attacks, which are types of side-channel attacks, aim to
extract secret keys through the analysis of scan data obtained
from scan chains. In order to secure crypto-chips from scan-
based attacks, multiple countermeasures have been proposed.
These are mainly categorized into two strategies: scan chain
obfuscation and scan I/O restriction. Scan chain obfuscation
aims to prevent attackers from controlling the scan chain by
modifying the scan structure, inserting obfuscation gates, or
adding sub-chains alongside the original scan chain. Agrawal
et al. [4] proposed an obfuscated scan chain structure that
incorporates XOR gates at random points in the scan chain.
Atobet et al. [5] proposed the state-dependent scan flip-
flop that replaces scan flip-flop at random points to prevent
attackers from identifying the correct scan timing. Lee et al. [6]
proposed subchain modification techniques that allow Lock &
Key controls and scan order obfuscation to prevent attacks
from accessing the scan structure. The Dynamic Obfuscated
Scan Chain [7] integrates the permutation of scan chains
with XOR gates and employs logic locking techniques using
dynamic keys. Moreover, DOSC incorporates a shadow chain
that restricts the dynamic keys from leakage to the scan output.
This means that both obfuscation and scan I/O restriction
are applied in DOSC, providing a robust defense mechanism
against unauthorized access or attacks.

In this paper, we propose the DOSCrack, a novel strategy
to deobfuscate dynamically obfuscated scan chains (DOSC).
Our contributions are listed below.

• We proposed DOSCrack, a novel deobfuscation frame-
work that incorporates structural analysis, symbolic exe-
cution, and key candidate clustering.

• We incorporated sequential equivalence checking to pin-
point distinguishing patterns that effectively differentiate
potential keys between clusters.

• We experimentally applied our framework on different
DOSC benchmarks with different bits of seed. The frame-
work demonstrates scalability, with the recorded run time
exhibiting a proportional increase as the seed size grows.

The rest of the paper is organized as follows. Section II
gives the necessary background of techniques as well as the

Fig. 1. Dynamically obfuscated scan chain architecture. [7]

structure of the dynamically obfuscated scan chain. Section III
introduces the novel DOSCrack deobfuscation framework.
Section IV analyzes the results of applying our framework
to DOSC benchmarks. Finally, Section V concludes the paper
with key takeaways and future works.

II. BACKGROUND AND PRELIMINARY CONCEPTS

In this section, we provide an overview of the architecture
of DOSC and introduce the fundamental concepts of symbolic
execution as well as our threat model.

A. DOSC Architecture

The DOSC [7] architecture is shown in Figure 1. It consists
of four parts: the control unit, the LFSR (linear feedback shift
register), the shadow chain, and the obfuscated scan chain.
The control unit generates signals that load the seed from
non-volatile memory and regulates the clock frequency of the
shadow chain. Then the LFSR takes the seed for obfuscated
key sequence generation, and the shadow chain protects the
obfuscated key from potential differential attacks. The DOSC
seed is considered confidential information to interpret correct
test responses. If DOSC is used to protect logic-locked circuits,
knowing DOSC’s seed would allow an attacker to perform
Boolean satisfiability (SAT) attacks [8] against the locked
functional circuit.

Previously. the Boolean satisfiability (SAT) attack was per-
formed against the DOSC architecture itself in an attempt to
obtain the LSFR’s seed. To do so, sequential circuit unrolling
was utilized [9]. It was found that DOSC architecture was
robust against SAT attacks because such unrolling inevitably
results in scalability issues for Boolean SAT solvers.

B. Symbolic Execution

Symbolic execution is a program analysis technique used
in testing, debugging, and verification. Instead of executing
a program with concrete input values, symbolic execution
operates on symbolic values and expressions. Symbolic execu-
tion engines are often combined with simulations to generate

Fig. 2. Workflow of DOSCrack deobfuscation.

feasible execution paths and further utilize satisfiability (SAT)
or satisfiability modulo theories (SMT) solvers to find the
executing patterns. In our deobfuscation framework, we lever-
age the built-in symbolic execution engine from EISec [10]
to convert our target netlist into C code. Subsequently, the
generated C code undergoes symbolic modeling.

C. Threat Model

In this section, we briefly review the threat model of Design-
for-Test/Debug (DfT/D) and present the assumptions of our
DOSCrack attack framework. In the context of semiconductor
supply chains, the design house typically dispatches the DfT/D
inserted netlist to contract third-party fab/foundries for the
production of chips and performing scan testing (i.e., JTAG)
on fabricated chips. These contract foundries, therefore have
full access to the scan chains embedded in the design as well
as the DfT/D insertion techniques. This accessibility presents a
potential risk as it allows these facilities to conduct scan-based
attacks. Based on this context, our DOSCrack framework
operates under the assumption that potential attackers have
knowledge of the DOSC architecture and access to the scan
chain. This threat model also aligns well with Kerckhoffs’s
principle which states that the security of a cryptosystem must
only lie in the secrecy of its keys and everything else should
be considered public knowledge. In our threat model, the
attacker’s goal is to find DOSC’s seed.

While many scan-based attacks (i.e. differential scan-based
attacks) necessitate certain understanding of the chip’s func-
tional logic to be effective, our method exclusively relies on
running an unlocked chip (or simulating an unlocked design)
in scan mode and does not require any knowledge of the
functional logic. This feature sets our DOSCrack framework
apart from many other oracle-guided attacks.

III. DOSCRACK FRAMEWORK

An overview of the DOSCrack framework is illustrated in
Figure 2. Our objective is to narrow down the candidate seed
space to a manageable quantity, where we can eliminate incor-
rect obfuscation keys until only a singular valid seed remains.

Algorithm 1 Structual Analysis
Input: DOSC netlist N ;
Output: LFSR netlist, scan chain netlist;

1: DOSC netlist → EXERT interaction analysis
2: if feedback nets detected then
3: FSM registers ← LFSR
4: feedback nets connectivity ← XOR gate inputs
5: else if feedback nets not detected then
6: datapath registers ← scan chains
7: end if
8: return LFSR netlist, Scan chain netlist; feedback nets connec-

tivity

Our framework is composed of four integral components:
First, we use an unlocked chip (or equivalently simulate an
unlocked chip’s DOSC and scan chain) to act as an oracle;
second, we employ structural analysis to distinguish between
the Linear Feedback Shift Register (LFSR) and scan chains;
third, we conduct symbolic execution followed by employing
an SMT solver to rule out keys; and fourth, we utilize clus-
tering algorithms to efficiently categorize the remaining key
candidates. This process iterates until the number of candidate
seeds/keys is small enough to brute force.

A. Structural Analysis

As explained in the threat model (Section II-C), we assume
that there is access to an open-source DOSC architecture and
the attacker’s goal is to obtain the LFSR seed. Structural
analysis begins by identifying the LFSR, shadow chain, and
scan chains so that symbolic engines can modulate each part
separately. The LFSR is typically implemented as a finite state
machine (FSM) in a physical context. This implementation
means that the LFSR is designed to transition between a finite
number of states denoted by state registers. On the other hand,
scan chains are implemented with datapath registers. These
registers are used to store and shift data through the scan
chain during testing or debugging processes, which allows
for sequential loading and shifting of test data. Therefore,
structural analysis distinguishes the LFSR and scan chains
based on their distinct physical implementations and functional
roles.

Algorithm 1 shows the detailed steps of our structural anal-
ysis. During structural analysis, the interaction analysis tool
EXERT [11] is employed to identify FSMs and datapaths (line
1). This identification is based on the characteristic features of
the FSM that align with the expected behavior of an LFSR,
primarily its feedback network typically constructed from
XOR gates (line 2 to 6). This process effectively separates
the LFSR and scan chains (line 8), allowing for more precise
modeling with symbolic engines.

B. Oracle Interaction in Test Mode

To apply the proposed deobfuscation framework, random
input sequences are applied to the target oracle which already
has an LFSR activation seed for its scan chain. These pat-
terns/responses are provided/collected in test mode, where the
random inputs with a certain number of sequences are fed into

Fig. 3. Structure of a 5-bit LFSR.

TABLE I
TABLE OF SYMBOLIC REPRESENTATION FROM SEED TO OBFUSCATION

KEY FOR EACH LFSR BIT (0 ≤ i ≤ 4) AT CLOCK CYCLES 1,2, . . ., t FOR
THE EXAMPLE IN FIG. 3.

Cycle
i 0 1 2 3 4

0 s0 s1 s2 s3 s4
1 s0 ⊕ s2 s0 s1 s2 s3
2 s0 ⊕ s2 ⊕ s1 s0 ⊕ s2 s0 s1 s2
...

...
t L0

t−1 ⊕ L2
t−1 L1

t−1 L2
t−1 L3

t−1 L4
t−1

the scan input (SI) port, while an equivalent number of patterns
are shifted out from the scan out (SO) port after certain clock
cycles. We utilize the oracle in test mode, which ensures
that the resulting patterns do not incorporate functional logic.
This also improves the performance of our deobfuscation
framework by focusing the attack only on the scan chain.

C. Symbolic Execution Engine and Symbolic Equation System

In this section, we delve into the methodology employed
by our symbolic execution engine, with a specific focus
on the process of recovering the symbolically assigned n-
bit seed, with bits denoted as (s0, s1, · · · , sn−1) from the
symbolic equation system. This system is constructed through
the symbolic modeling of both the LFSR and the scan chain.

1) Symbolic Execution Engine: The symbolic execution
engine modulates the LFSR and the scan chains by converting
the target netlist to functionally equivalent C code, where
every bit of the unknown seed is represented as a symbolic
variable. As our structural analysis identifies the LFSR and
the scan chains, the symbolic execution engine proceeds to
model the LFSR and the scan chains separately. An LFSR
is most often a shift register whose input bit is driven by the
XOR of some bits of the overall shift register value. Structural
analysis provides detailed information about the connectivity
of the feedback nets, which represent the locations within the
LFSR register where the XOR gate receives its inputs. To
symbolically represent LFSR outputs, we denote these two
inputs as (x, y). We describe the i-th bit output of LFSR
at cycle t as Li

t. Thus, a general LFSR output at cycle t is
represented as:

Li
t =

{
Lx
t−1 ⊕ Ly

t−1, when i = 0;

Li
t−1, otherwise

This equation modeling the LFSR outputs can be described as
follows. The first bit of the LFSR is always connected to the
output of the XOR gate. At every clock cycle, the first bit of
the LFSR is updated based on the output from the XOR gate,

Fig. 4. Example of scan chain modeling with N = 3 at any clock cycle T .
The scan out is denoted as SOT+3 = SIT ⊕ LT

0 ⊕ LT+1
1 ⊕ LT+2

2

with the inputs of the XOR gate identified through structural
analysis as being at positions (x, y) within the LFSR. For the
rest of the bits in the LFSR, from position 1 to n − 1, the
shifting process occurs when each bit shifts from its previous
state to the next position.

Figure 3 shows an example of 5-bit LFSR with x = 0
and y = 2. Table I shows the cycled output based on
seed (s0, s1, · · · , s4). At cycle 0, the seed (s0, s1, · · · , s4)
is loaded into the LFSR cells and the output of any cycle t
can be computed based on the connectivity information (x, y)
obtained from structural analysis. Thus we define the function
f which represents the LFSR output given the seed and cycle t
as L⃗t = f [(s0, s1, · · · , sn−1), t], where L⃗t denotes the LFSR
output in a vector form.

The symbolic engine models the shadow chain and the
scan chains together. Both scan chains and shadow chains can
be conceptualized as cascading datapath registers, receiving
inputs from the SI port of the scan chain and the obfuscation
key input, whereas the outputs are directed to the SO port. The
symbolic engine then models the transformed C code, treating
it as a symbolic equation representing the relationship between
the inputs and the outputs.

Table II shows an example of conversion from netlist to C
code to symbolic equation for a single scan chain cell. This
scan chain cell is located at the end of the scan chain that
connects directly to the SO port. By generating every symbolic
equation for all scan cells, the symbolic equation that connects
the SI port to the SO port is formulated and represented as

SOT+N = SIT
N⊕

t,i=0

LT+i
t , where N denotes the length of

scan chains and T denotes the cycle when scan in patterns are

shifted into the scan chain. The
N⊕

t,i=0

denotes the continuous

XOR operation of Li
t and is derived by symbolically modeling

the scan chains.
Figure 4 shows an example of scan chain modulation under

this equation with N = 3, where SOT+3 = SIT ⊕ LT
0 ⊕

LT+1
1 ⊕LT+2

2 . This equation captures the relationship between
the Scan In (SI) and Scan Out (SO) patterns, effectively encap-
sulating the dynamics of how the obfuscation key values are
processed within the scan chain. Given the tracking of SI and
SO patterns with correlated obfuscation keys, we define the
function g where SOT+N = g[SIT , (L

T
0 , L

T
1 , · · · , LT+N−1

t)]
which is derived such that the SO pattern is symbolically rep-
resented with corresponding SI pattern with a certain sequence
of XOR operation on obfuscation key.

2) Symbolic Equation System and Solver: In the previous
section, the obfuscation keys are symbolically represented in
Table I, and the scan chains are modeled with symbolic equa-

TABLE II
TABLE OF CONVERSION FROM NETLIST TO C CODE AND SYMBOLIC

EQUATION SETUP

Netlist

wire shadow chain/N1, Scan out;
SDFFQX scan reg[1] (.D(n1),.SI(out[1]),.SE(test se),

.CK(CK),.Q(Scan out);
AND2X1 U1(.A(in[0],.B(shadow chain/N1,.Y(out[1]);

C code

bool shadow chain/N1, Scan out;
out[1] = in[0] & shadow chain/N1;
if(test se == 0) {Scan out = n1;}
else {Scan out = out[1]; m+=1;}

Symbolic
equation Scan out == shadow chain/N1 & in[0]

tions in Table II in our running example. The two symbolic
equations then form simultaneous equations f and g:{

L⃗t = f [(s0, s1, · · · , sn−1), t] ;

SOT+N = g
[
SIT , (L

T
0 , L

T
1 , · · · , LT+N−1

t)
]

As discussed in Section III-B, the scan-in and scan-out patterns
are generated from test mode interactions with the oracle.
By putting m pairs of simulated corresponding SI and SO
patterns into the simultaneous equations, we construct the
symbolic equation system that encompasses m equations,
each representing their relationship and transformation. As
a result, in the symbolic equation system we developed, the
assigned seed constitutes the only set of symbolic variables.
By applying an SMT solver to this system of equations, we
can effectively solve for possible solutions of these variables
and recover candidate seeds.

D. Obfuscation Key Clustering

Our system utilizes the SMT solver to generate solutions for
a symbolic equation system, which in turn produces the space
of obfuscation keys and the corresponding seed values. To
effectively narrow down the possible seed space, it is essential
to introduce more symbolic equations by further querying
more SI patterns to the oracle to produce more symbolic
equations. However, the effectiveness of generating SO and SI
patterns from random simulations diminishes over iterations.
This diminishing effect occurs because the candidates for
obfuscation keys begin to form similarities, making it increas-
ingly difficult for random SI vectors to effectively differentiate
between them based on SO patterns. As a result, the random
simulation approach becomes less capable of exploring and
identifying differences among potential obfuscation keys.

To address this problem, we applied the K-means clustering
algorithm to categorize existing candidates of obfuscation
keys into groups to rule them out as a whole. The overall
workflow is illustrated in Figure 5. After using symbolic
execution and equation solvers, we produce a certain number
of key candidates as a starting point. We then utilize the
Hamming distance (HD) metric, ideal for binary data, for
the K-means clustering algorithm to cluster key candidates.
From two distinct clusters, we select centroid keys and map
them back to their corresponding symbolic seeds. We then
construct a miter with an XOR gate for Sequential Equivalence
Checking (SEC), which compares DOSC architectures loaded

Fig. 5. Workflow of generating distinguishing patterns with Jasper SEC.

Fig. 6. Flow chart with checkpoints that evaluate silhouette scores. Two
silhouette score thresholds determine when to abort clustering and when to
redo clustering.

with different seeds, generating distinguishing input patterns
tailored to each cluster. We query the oracle with this tailored
input sequence to form a new symbolic equation that is
then added to our symbolic equation system and solvers.
This approach effectively addresses the limitations of ran-
dom simulation. The generated input sequence is specifically
designed to produce distinct outputs, which implies that the
corresponding symbolic equation can eliminate one of the two
key candidates. Furthermore, due to the similarity of keys
within the same cluster, this equation is likely to rule out
even more keys in that cluster! Thus, this method efficiently
solves the issue of diminishing returns in random simulation.
By iteratively selecting different keys from various clusters,
we can formulate more equations, effectively reducing the key
candidate space to a size suitable for brute force.

Our process involves iterative re-clustering as more obfus-
cation keys are ruled out and the clarity of cluster margins
decreases. Figure 6 shows the flowchart of the conditions
under which re-clustering should be invoked, alongside deci-
sion points for transitioning to brute-force elimination. During
the iterative process of selecting clusters, we incorporate two
critical checkpoints to assess the silhouette score, a common
metric for evaluating the quality of clustering results. The
initial checkpoint after K-means clustering ensures effective
clustering results. A silhouette score below 0.6 triggers a
switch to brute-force key elimination. A subsequent evaluation
occurs after eliminating a certain number of keys. At this

point, we calculate the silhouette score, taking into account
both the reduced key set under the initial cluster formations. If
the silhouette score remains above the threshold, indicates that
clustering is still effective and the generation of distinguishing
patterns is still efficient. Conversely, a score drop below this
threshold signals the need for re-clustering. These silhouette
score checkpoints ensure our approach dynamically adapts,
maintaining efficiency in isolating key groups with each iter-
ation.

IV. EXPERIMENTAL RESULTS AND EVALUATION

We synthesize four DOSC benchmarks with different LFSR
seed sizes (8-bit, 16-bit, 32-bit, and 64-bit) to evaluate DO-
SCrack. Our framework is tested exclusively based on test
mode simulation of a seed-loaded oracle netlist with the func-
tional input port of the scan flip-flop open. To further simplify
the application of our DOSCrack method, we establish only
a single scan chain for each benchmark and the length of
scan cells is identical to its seed size for every benchmark.
We operate under the assumption that these seeds are not
reachable or accessible during normal operation as would be
the case with a physical oracle chip. Test mode simulation is
performed by Synopsys VCS. The benchmarks are synthesized
with Synopsys Design Compiler. We used an Intel(R) Xeon
E5-2450L CPU for the synthesis of DOSC benchmarks, test
mode simulation, and running of DOSCrack. The run time
results are shown in Table III and illustrated in Figure 7.

1) DOSC with 8-bit Seed: Our testing of the DOSCrack
framework starts with a DOSC benchmark configured with
an 8-bit seed and a corresponding 8-bit LFSR. Both the
scan chains and the shadow chain comprise eight scan cells
each, aligning with the 8-bit size of the seed. Given the
modest 8-bit size of the seed, our symbolic execution engine
operates efficiently and the SMT solver has generated just 3
potential key candidates. Consequently, there is no requirement
to employ clustering algorithms to manage the obfuscation
key candidates’ space. The total run time is 10.2 minutes and
the simulation time for SI/SO patterns is 8.3 minutes. The
remaining 3 keys were trivially brute forcing pruned to find
DOSC’s actual LFSR seed.

2) DOSC with 16-bit Seed: In our evaluation of a DOSC
benchmark with a 16-bit seed under the same configuration
and simulation, the SMT solver identified 356 potential seed
candidates, apt for clustering analysis. Initial clustering formed
14 groups with a silhouette score of 0.68, suggesting effective
grouping. By selecting cluster combinations for the Jasper
SEC system, 91 distinguishing patterns were generated, each

(a) (b)

Fig. 7. Number of keys ruled out with run-time bar charts and Clustering histograms for (a) 32-bit DOSC and (b) 64-bit DOSC per iteration of clustering.
With each successive re-clustering iteration in our process, the distribution of keys within clusters becomes increasingly narrow.

TABLE III
RESULTS OF DOSCRACK WITH DIFFERENT SEED SIZES. × MEANS NOT
APPLICABLE. IN THE TOTAL RUN TIME ROW, ‘M’, ‘H’, AND ‘D’ DENOTE

MINUTES, HOURS, AND DAYS.

DOSC seed size 8-bit 16-bit 32-bit 64-bit
of Scan IO patterns 400 400 500 500
of Obfuscation Key Candidates 3 356 50288 ≤ 217

of Clusters × 14 107 2440
of Seed Candidates 3 23 327 6508
Total Run Time 10.2m 37.9m 858m 3d23h

forming a symbolic equation to help eliminate roughly 4
possible key candidates. This reduced the key candidates’
space to 23 keys without the need for further clustering.
Subsequent brute-force methods then identified the correct
seed candidates within the total runtime of 37.9 minutes,
demonstrating the approach’s efficiency.

3) DOSC with 32-bit Seed: Unlike the previous test, we
increase the number of initial SI/SO patterns generated from
simulation as we aim to explore the diminishing issues ex-
plained in Section III-D. We generated 400 SI/SO patterns to
build symbolic equations and further generated another 100
patterns to compare the number of solutions from the SMT
solver. This led to the SMT solver identifying 50,354 solutions
with 400 patterns and 50,288 with 500, demonstrating that
a 25% increase in patterns only reduced key candidates by
66. This highlights the diminishing issue, underscoring the
necessity of clustering and SEC miter techniques for produc-
ing distinguishing patterns. Through clustering, we narrowed
down the key candidates from 50,288 to 327 across 107
clusters. As the process progressed, a linear decrease in the HD
between clusters was observed 7(a), indicating the remaining
keys within each cluster become more similar.

4) DOSC with 64-bit Seed: The biggest benchmark we
tested emphasizes the 64-bit seed of DOSC. The initial out-
come from the SMT solver reveals approximately 150,000
obfuscation key candidates, which equates to around 217 solu-
tions. Clustering results show the number of 2440 groups and
we go through iterations of clustering whenever the silhouette
score is below 0.6. Figure 7(b) shows the run-time results in
the bar chart and the clustering distribution in the histogram.
The 64-bit DOSC takes 5 iterations of clustering and the
number of keys distribution becomes more narrow through
each iteration. The final phase of our analysis involved pruning
out the remaining 6,508 key candidates using a brute-force
approach. The average time taken to brute force test 1,000

random keys in our analysis, often referred to as the ’pruning
time’, is approximately 2.5 hours.

V. SUMMARY AND FUTURE WORK

In this paper, we present DOSCrack, an oracle-guided
attack that utilizes symbolic execution and binary clustering
to break DOSC. By applying DOSCrack on different sizes
of benchmarks, our framework successfully reduced the key
candidates’ number and broke the 64-bit seed DOSC in
3d23h, which is much more efficient compared to the run-out
threshold of 10 days for traditional SAT attacks. Additionally,
in our testing, the brute-force effort to rule out 1,000 keys took
approximately 2.5 hours. This duration highlights the signifi-
cantly greater complexity of the brute-force method compared
to our approach. Future work in this area could concentrate
on developing more advanced algorithms for intelligently
selecting different clusters to generate distinguishing patterns.
By enhancing the method of choosing clusters, we may further
improve the distinctiveness of the patterns generated, thereby
more effectively ruling out obfuscation keys.

REFERENCES
[1] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction

in core-based ics,” in Proceedings International Test Conference 1998
(IEEE Cat. No. 98CH36270), pp. 448–457, IEEE, 1998.

[2] “Testmax atpg:advanced pattern generation.” https://www.synopsys.com/
implementation-and-signoff/test-automation/testmax-atpg.html.

[3] “Ieee standard for test access port and boundary-scan architecture,” IEEE
Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444, 2013.

[4] M. Agrawal, S. Karmakar, D. Saha, and D. Mukhopadhyay, “Scan based
side channel attacks on stream ciphers and their counter-measures,”
in Progress in Cryptology - INDOCRYPT 2008 (D. R. Chowdhury,
V. Rijmen, and A. Das, eds.), (Berlin, Heidelberg), pp. 226–238,
Springer Berlin Heidelberg, 2008.

[5] Y. Atobe, Y. Shi, M. Yanagisawa, and N. Togawa, “State dependent scan
flip-flop with key-based configuration against scan-based side channel
attack on rsa circuit,” in 2012 IEEE Asia Pacific Conference on Circuits
and Systems, pp. 607–610, 2012.

[6] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE Transactions on Depend-
able and Secure Computing, vol. 4, no. 4, pp. 325–336, 2007.

[7] D. Zhang, M. He, X. Wang, and M. Tehranipoor, “Dynamically ob-
fuscated scan for protecting ips against scan-based attacks throughout
supply chain,” in 2017 IEEE 35th VLSI Test Symposium (VTS), pp. 1–6,
2017.

[8] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 137–143, IEEE,
2015.

[9] M. S. Rahman, A. Nahiyan, S. Amir, F. Rahman, F. Farahmandi,
D. Forte, and M. Tehranipoor, “Dynamically obfuscated scan chain to
resist oracle-guided attacks on logic locked design.” Cryptology ePrint
Archive, Paper 2019/946, 2019. https://eprint.iacr.org/2019/946.

[10] F. Fowze, M. Choudhury, and D. Forte, “Eisec: Exhaustive information
flow security of hardware intellectual property utilizing symbolic execu-
tion,” in 2022 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), pp. 1–6, 2022.

[11] J. Wu, F. Fowze, and D. Forte, “Exert: Exhaustive integrity analysis for
information flow security,” in 2022 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pp. 1–6, 2022.

