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Abstract—A trending topic in nearly every field these days,
including electronic design automation (EDA) is machine learning
(ML) and artificial intelligence (AI). However, to properly train
and evaluate such approaches, especially when deep learning
is involved, a very large number of benchmarks is necessary.
This paper delves into the application of information theory for
circuit benchmark assessment; we utilize evolutionary algorithms
for exhaustive exploration of the design search space. Building
upon existing research utilizing genetic algorithms and Prolog-
based binary trees, our approach focuses on genetic algorithms,
employing crossover, mutation, and selection on populations
generated from input benchmarks. While the initial work halves
the binary tree structure of smaller designs, we enhance its
scalability in terms of benchmark complexity and applicability.
We focus on two design goals: size optimization and diverse
benchmark generation. The fitness function used to assess the
feasibility of a result is based on the information theory concepts
of mutual and normalized mutual information. Its successful
implementation also creates opportunities for other optimization
objectives, such as security-oriented ones.

Keywords—digital circuit; binary decision diagram; genetic
algorithm; information theory

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML)
techniques can play an essential role in electronic design
automation (EDA) [1]. Benefits include but are not limited
to guiding design tradeoffs, educating users on best design
practices, detecting bugs and mitigating them, recommending
the best test strategies and much more. The state-of-the-art
today is deep learning which has been able to solve some of
the most persistent problems in speech and face recognition,
object detection, etc. However, vast amounts of quality data
are required to deliver effective AI/ML models and solutions.
The EDA community is plagued by a lack of benchmarks
with most researchers still relying on common sets such as the
ISCAS (’85,’89, ’99) and OpenCores benchmarks. Although
these have varying degrees of complexity, these designs do
not accurately capture the entire space of today’s IC industry
and will not result in the most robust AI models. In this
paper, we employ information theory for for circuit benchmark
assessment and utilize evolutionary algorithms for exhaustive
exploration of the design search space for optimization.

The concept of information theory deals with measuring and
analyzing information in signals or data. It has applications
in telecommunications, data compression, cryptography, and
machine learning. Information theory especially finds some
applicability to the assessment of circuit benchmarks. Entropy-
based equations with input values from a design can be used
to achieve specific objectives, optimization, or otherwise [2],
[3]. However, without an effective means of exploring the
full range of possible options, information theory loses the
opportunity to find the most suitable solution. In this work,
evolutionary computations are used to exhaustively explore the
design search space. Evolutionary computations are a family of
algorithms for global optimization inspired by the Darwinian
concept of biological evolution [4]. They are suitable for
optimization tasks that require approximate solutions with
minimum possible overhead. Examples include Swarm Intelli-
gence [5], Cultural Algorithms [6] and Genetic Algorithms [7].

Our work supplements the earlier publication that uses evo-
lutionary computation to explore the search space while apply-
ing entropy calculations for similarity measures [2]. Like our
predecessors, we specifically focus on genetic programming,
which allows us to utilize the concepts of crossover, mutation,
and selection on synthetic populations generated from an input
benchmark. We provide two design goals; one focuses on
structural optimization while the other attempts to minimize
decision diagram sizing. The structural optimization goal has
the same motivation as described in [8]. However, in this
paper, we are able to maintain the input benchmark’s function
while also increasing structural diversity and optimizing other
objectives. The current implementation works exclusively on
combinational benchmarks but can be applied to both single
and multiple output benchmarks. This is facilitated by the
use of Binary Decision Diagrams (BDDs) instead of the
binary multiplexers used in [2]. A BDD is a directed acyclic
graph used to represent a Boolean function [9]. For genetic
programming, the fitness (suitability) function is created using
the information theory concepts of mutual and normalized
mutual information, as seen in [10]. An optimum fitness value
maximizes the normalized mutual information between the
original design and the proposed solution benchmark.

Our contributions are summarized as follows:
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1) Sizing Optimization: Exploration of diverse forms of
sizing optimization for the provided benchmarks, ac-
commodating a range of design objectives.

2) Functionally-Divergent Benchmarks: Introduction of
benchmarks exhibiting functional divergence to enhance
their suitability for comprehensive testing purposes.

3) Modular Algorithm Pipeline: Provision of a flexible
algorithm pipeline, featuring modularity and adaptability
through interchangeable fitness functions.

The rest of the paper reads as follows: Section II discusses
the information theory and other concepts applied in this paper.
Section III highlights previous work combining the concepts
applied in our proposed work. Section IV explains our method,
showing the two-stage approach to achieving a benchmark
result. Section V merges the experimental setup with results
on selected benchmarks. Section VI concludes the paper and
provides directions for future work.

II. BACKGROUND

A. Information Theory and Shannon’s Entropy

Information theory under applied mathematics and electrical
engineering simply involves quantifying information. One of
the key concepts in information theory is entropy, as intro-
duced by Claude Shannon [11]. Entropy is a measure of
uncertainty or randomness associated with a random variable
or a set of data, and within the context of information theory, it
represents the average amount of surprise or unpredictability in
a message [12], [13]. Shannon’s entropy formula is expressed
as

H(X) = −
n∑

i=1

P (xi) · log2(P (xi)) (1)

where H(X) is the entropy of the random variable X , n is the
number of possible outcomes and P (xi) is the probability of
outcome xi. The formula calculates the expected value of the
information content of a message, measured in bits. When the
probability distribution is more uniform across outcomes, the
entropy is higher, indicating higher uncertainty. Conversely, if
the distribution is more concentrated, the entropy is lower.

In the context of circuit design and optimization, entropy-
based measures can be applied to assess the randomness or
complexity of Boolean functions [2], [14]. These measures
are often used in genetic algorithms and other search space
optimization techniques to guide the search for more effi-
cient designs. By leveraging entropy-based fitness functions,
a designer can explore and synthesize circuits that balance
complexity and functionality.

B. Evolutionary Algorithms

Evolutionary Algorithms are inspired by the process of
Darwinian-based natural selection. They operate by evolving a
population of candidate solutions over successive generations
to find optimal or pareto solutions to a given problem [16].
The key components, including ones used in this paper are:

1) Initialization: A population of potential solutions is
created, often randomly or using specific heuristics.

2) Selection: Solutions are evaluated based on a fitness
function, and individuals with higher fitness are more
likely to be selected for reproduction.

3) Crossover: Pairs of selected individuals exchange ge-
netic information to create new solutions, mimicking the
crossover of genetic material in biological reproduction.

4) Mutation: Random changes are introduced to some
individuals, adding diversity to the population and ex-
panding the solution search space.

5) Termination: The algorithm stops when a termination
criterion is met, such as reaching a maximum number
of generations or achieving a satisfactory solution.

Examples include genetic algorithms used in various opti-
mization problems like job scheduling and financial modeling,
and differential evolution widely used for numerical optimiza-
tion problems in engineering design, parameter tuning, and
robotics. These algorithms are especially suitable for complex,
high-dimensional problems where traditional optimization ap-
proaches may struggle [17].

C. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are data structures used
to represent and manipulate Boolean functions efficiently.
They provide a compact and canonical form for expressing
logical relationships in a binary tree structure [18]. Within
digital circuit design, they are used for hardware verification
and optimization. The key features of BDDs are:

• Nodes: Each node represents a Boolean variable.
• Edges: Directed edges connect nodes, indicating the

variable’s assignment (0 or 1).
• Terminal Nodes: The tree ends with terminal nodes

representing the constant values 0 and 1.
The benefits of using BDDs include:
• Compact Representation: BDDs can represent large

Boolean functions more efficiently than explicit truth
tables.

• Canonical Form: BDDs have a unique, canonical form,
ensuring consistency in representation.

• Efficient Operations: BDDs support efficient operations
like conjunction, disjunction, and negation.

An example of a BDD and the logic function if represents
can be found in Figure 1.

III. LITERATURE REVIEW

As mentioned in Section I, information theory has found
utility in various data-reliant fields. However, for operations
on digital circuits, the work we build on combines both
information theory and evolutionary algorithms. The authors
explore the application of pure Genetic Programming for
synthesizing logic circuits using binary multiplexers, guided
solely by a fitness function based on entropy [2]. The Shan-
non expansion [12] of a Boolean formula is identified as a
reliable foundation for the evolutionary method. The paper
suggests the use of Information Theory, particularly entropy-
based measures like Mutual Information (MI) and Normalized
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a) b)

Fig. 1. a) Binary Decision Diagram with corresponding b) truth table for f = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2) ∨ (x2 ∧ x3) from [15]

Mutual Information (NMI), in designing fitness functions for
Boolean circuit synthesis. Three fitness functions are devel-
oped, highlighting the suitability of NMI as a fitness function.

Echavarria et al. present a novel methodology for Ap-
proximate Computing, specifically in the context of multi-
output logic functions [19]. Unlike existing approaches that
minimize each output function independently, our method
considers the collective impact on all outputs, maximizing
cross-function minimization potential. Integrated into a design
space exploration technique, our approach provides a Pareto-
set of designs, offering trade-offs between hardware costs and
error. Experimental results demonstrate efficiency, achieving
significant reductions in terms and literals with minimal inac-
curacy. [19]

Another paper addresses challenges in Approximate Com-
puting, focusing on accelerating error metric computations
for logic approximation [20]. The proposed methods leverage
structural information and estimate metrics for multi-output
Boolean functions represented as BDDs. A greedy, bucket-
based BDD minimization framework incorporates these error
metric computations, producing Pareto-optimal solutions in
terms of BDD size and multiple error metrics. Experimental
results demonstrate speed improvements and approximated
BDDs.

Finally, an article introduces a novel framework for syn-
thetic circuit benchmark generation to address the limita-
tions of using traditional benchmarks in hardware security
research [8]. Leveraging principal component analysis (PCA)
and linear optimization, the proposed framework produces
divergent benchmarks with maximum structural variation. The
framework allows user customization for desired features,
enhancing the generation of challenging benchmarks for data-
driven hardware security.

IV. PROPOSED METHODOLOGY

The approach outlined in this paper is structured into
two main components. The initial part encompasses pre-
evolutionary operations essential for obtaining the BDD
that serves as the foundational structure for the framework.

The subsequent phase builds on the DEAP Python package
designed explicitly for genetic algorithm operations [21]. Fur-
ther details regarding these are elaborated in the subsequent
subsections.

A. Pre-Evolutionary Operations

The process begins with the input of a gate-level netlist,
which is the best-suited representation of the logical connec-
tions between various gates in a digital circuit. The original
netlist is then converted into a directed graph (digraph), main-
taining the relationships and dependencies among different
elements in the circuit. This digraph becomes a crucial data
structure for the algorithm’s operation, because its directional
edges can show fanin and fanout information. The two ac-
tions described above are enabled by the circuitgraph Python
package [22].

The next step involves the random generation of a popu-
lation of individuals from the target digraph created above.
These individuals collectively form a diverse set that mirrors
the potential designs of the digital circuit. The algorithm
then transforms these digraphs into BDDs, as seen in Fig. 2.
As described in Section II-C, the BDD structure enhances
efficiency in handling and evaluating the logic of the circuits.
The evolutionary process unfolds through selection, crossover,
and mutation operations on the population of BDDs. The
conversion is facilitated by pyEDA, a Python library dedicated
to EDA [23]. This open-source package offers several features,
including symbolic Boolean algebra with diverse function
representations like logic expressions, truth tables with “don’t
care” states, and BDDs.

1) Utilization of Binary Decision Diagrams: Our current
implementation focuses specifically on combinational designs.
The choice of Boolean function representations is crucial
for manipulating the actual circuit designs and leveraging
Boolean reasoning. As described above, various data struc-
tures are available for representing Boolean functions, includ-
ing truth tables, Boolean formulas in the form of sums of
products (SOP) and products of sums (POS), and Boolean
networks. In our case, we opt for BDDs due to their Shannon
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Fig. 2. Summary of framework for functionally-equivalent benchmark generation using genetic algorithm: a) Input of gate-level netlist; b) Conversion of
original netlist into digraph; c) Random generation of population as digraphs d) Conversion of digraphs into BDD representation; e) Selection; f) Crossover;
g) Mutation; h) Best-fit individual and benchmark generation.

Fig. 3. Excerpt of DEAP declarations required for evolutionary operations
in Python environment. “mate” is the crossover function set to single point,
“mutate” is set to a 30% likelihood of an attribute being mutated, while
“select” indicates selection of the top 30 individuals per generation.

core factor tree structure, variable ordering restriction, and
reduction rules, which make the representation canonical.
BDDs facilitate easy and efficient logic operations while main-
taining functionality, provided the variables are appropriately
ordered [18]. The graph structure of BDDs proves highly
suitable for applications involving graph-based problems, and
their parallelizability allows for scalable processing of larger
Boolean functions.

B. DEAP Programming for Evolution

DEAP is a framework that merges the full functionality
of the Python programming language with a straightforward
and streamlined core of transparent Evolutionary Computation
components [21]. This combination is well-suited for the appli-
cation of existing and novel ideas in Evolutionary Algorithms
while maintaining ease of use through simple and explicit
algorithms.

Selection involves identifying individuals with favorable
traits based on the selected fitness function. This eliminates

non-functional members of the generated population while
providing the most fit individuals. The best 30 individuals
are selected to proceed (see Fig. 3). The next step, crossover,
combines genetic information from two parent individuals to
produce offspring, simulating the recombination of genetic
material in biological evolution. The DEAP framework pro-
vides various options for crossing, including two-point and
single-point implementations. We empirically find that the
latter favors our implementation.

Mutation introduces random changes to individual BDDs,
adding diversity to the population. The function shuffles the
attributes of the crossed over individual and returns the mutant.
Since at this stage of the frame work, the bdd is manipulated as
a sequence, mutation is enabled by randomly moving indexes.
The indpb argument in Fig. 3 is the probability of each
attribute to be moved.

The algorithm continuously refines the population through
these evolutionary operations, aiming to improve the fitness of
individuals over successive generations. The best-fit individ-
ual, representing an optimized design, is identified based on
the defined fitness criteria. Additionally, a gate-level circuit is
generated from this optimized design, providing a reference
for evaluating and comparing the algorithm’s performance.

C. The Ideal Fitness Function

The exploration of the relationship between the target
Boolean function (T ) and the circuit output (C) involves
entropy-based metrics. To generate the effective fitness func-
tion, Conditional Entropy from Eqn. (2) and Joint Entropy
from Eqn. (3) are required. Referring to [2], the conventional
fitness function, driven solely by mutual information (MI),
has exhibited suboptimal performance (Eqn. (4)). The paper

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.



advocates for fitness functions rooted in Normalized Mutual
Information (NMI) (Eqn. (5)).

H(T |C) = −
n∑

i=1

n∑
j=1

p(ti, cj) log2
p(ti, cj)

p(cj)
(2)

H(T,C) = −
n∑

i=1

n∑
j=1

p(ti, cj) log2 p(ti, cj) (3)

MI(T,C) = H(T ) +H(C)−H(T,C) (4)

NMI(T,C) =
H(T ) +H(C)

H(T,C)
(5)

This adjustment in the fitness function aims to enhance the
efficacy of the genetic programming algorithm in synthesizing
logic circuits. It creates a more regularized search space for
exploration. Further information on the development of the
NMI-based fitness function is detailed in [2].

V. EXPERIMENTS AND RESULTS

The experimental setup serves the purpose of obtaining
sizing solutions and diverse benchmarks. These benchmarks
are crucial for testing and are sourced from various public
datasets. All experiments are executed on the HiPerGator
supercomputer at the University of Florida. The resources
accessed are 4 CPU cores with 80 GB of memory. This is
supplemented by a single GeForce 2080Ti GPU unit.

The results obtained from the experiments are detailed in
Table I. The optimization process leads to sizing solutions,
and in some instances, the original design is retained as
intended (termination requirement). For designs with multiple
outputs, we leverage the fan-in for each output to create a
single function. In this iteration, the focus is on optimizing
individual functions. If common terms appear among these
functions, we achieve overall optimization. The fitness func-
tion selected for use is:

(Length(T )− Hamming(T,C))× (10− H(T |C)) (6)

It is based on conditional entropy in Eqn. (2) and uses the
mentioned factor to suppress the reproduction of undesirable
individuals [2].

A. Running Time

The running time of the experiments is directly influenced
by the complexity of the given benchmark. Through empirical
observations, it is noted that designs with more than 25 inputs
posed substantial challenges in terms of processing, regardless
of the computer resources utilized. A key focus for the next
iteration is to parallelize operations on circuits of this nature
and their respective BDDs. This technique will enable the
generation of appropriate benchmarks and solutions within a
reasonable timeframe. Furthermore, the parallelization process
will speed up operations on current complex designs, such as
the int2float benchmark in Table I.

B. Generation Count

Another notable result observed during the experimentation
process is the relationship between generation counts and
optimal population size. We find that these factors exhibited
a direct correlation with the size of the original benchmark.
Larger benchmarks necessitated higher population counts and
increased generation numbers, expanding the search space.
The experimentation begins with 100 generation counts and
expanded to 22 iterations to enhance the likelihood of finding
satisfactory solutions. Similarly, an initial population size of
100 is used, but adjustments are made based on the optimal
number of designs obtained and their usability. Notably, an
unnecessarily large population size is indicated by repeated fit-
ness function values across selected individuals in generations.
Determining the ideal population size is crucial for achieving
substantial diversity in fitness results and design types, a factor
that influences the production of benchmarks.

C. Benchmark Divergence

The fitness function results are employed as a measure of the
extent of divergence in the context of divergence benchmarks.
For instance, a fitness score of 18 indicates that the design
is structurally more divergent than a design with a score of
19 while maintaining identical functionality to the original
target function. Therefore, by establishing specific thresholds
for particular designs, we can control the level of structural
divergence we desire. Leveraging this approach enables the
generation of multiple benchmarks, which proves valuable for
various digital circuit experiments. Table II shows results on
the same benchmarks used in Table I. We note that while
ranges can be set for divergent benchmarks, further work is
required to fine-tune requirements for results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the outcomes of experiments that
yield viable results in the production of size-optimized designs
using a genetic algorithm framework. Additionally, we suc-
cessfully generate structurally divergent benchmarks employ-
ing the fitness function proposed. These benchmarks serve as
valuable datasets for future testing and experimentation. While
improving upon the previous work by incorporating BDDs
and synthesizing multiple output functions, we encounter chal-
lenges related to access runtimes and limited optimization for
these functions. We also note that our experiments exclusively
focus on combinational designs.

For future work, we plan to integrate parallelization with
enhanced genetic algorithm frameworks, providing support for
sequential designs. Moreover, we aim to broaden our optimiza-
tion objectives to explicitly include structural considerations
and other design requirements for digital circuits.
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TABLE I

RESULTS FOR DESIGNS FROM VARIOUS SOURCES. OPTIMIUM SOLUTIONS ARE ONES THAT MATCH THE FUNCTIONALITY OF THE TARGET CIRCUIT.

Benchmark Source Inputs Outputs Average Running Time/s Average Generations Optimum Solution
test.v [2] 3 1 100.33 2200 No
gpt.v ChatGPT 3.5 3 3 166.59 983.333 Yes
c17.v [24] 4 2 227.92 2200 No

z4ml.v [25] 7 4 498.69 2200 No
int2float.v [26] 11 7 31499.97 1257.571 Yes

two bit multiplier.v [26] 4 4 213.08 2200 No

TABLE II
RESULTS FOR DIVERGENT DESIGNS FROM SOURCES IN TABLE I.
THRESHOLD VALUE IS LARGEST FITNESS INTEGER VALUE THAT

PRODUCES FUNCTIONAL BENCHMARK

Benchmark Threshold Value Time to Solution
test.v 17 2.70
gpt.v 19 13.49
c17.v 18 149.91
z4ml.v 18 209.82
int2float.v 19 28983.51
two bit multiplier.v 17 103.35
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C. Gagné, “Deap: Evolutionary algorithms made easy,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 2171–2175, 2012.

[22] J. Sweeney, R. Purdy, R. D. Blanton, and L. Pileggi, “Circuitgraph: A
python package for boolean circuits,” Journal of Open Source Software,
vol. 5, no. 56, p. 2646, 2020.

[23] C. Drake, “Pyeda: Data structures and algorithms for electronic design
automation,” in Proc. 14th Python in science conference (SciPy), 2015,
pp. 26–31.

[24] H. Fujiwara, “Iscas’85 benchmarks: Special session on atpg and fault
simulation.”

[25] C.-C. Tsai and M. Marek-Sadowska, “Multilevel logic synthesis for
arithmetic functions,” in Proceedings of the 33rd annual Design Au-
tomation Conference, 1996, pp. 242–247.
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