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S ide-channels are nonfunctional characteristics
of a program or hardware (HW), such as
power consumption, electromagnetic radiation

(EM), temperature, timing, or memory consumption,
that allow one to infer information about the program,
software (SW), or HW. Often, attackers take advan-
tage of these side-channels to uncover secrets from
cryptographic systems, web applications, and more.
However, in the right hands, side-channel analysis
can also be used for anomaly detection where it has
several advantages over traditional solutions.

An anomaly is defined as “an occurrence that is
different from what is standard, normal, or expected.”1

Anomalies are caused by the activation of faults. Faults
arise due to failure, malfunction, or quality degrada-
tion which may be unintentional (i.e., due to design
weaknesses, errors, or bugs) or intentional (i.e., due to
malware). Anomalies that disrupt normal system oper-
ations, exceed safety thresholds, or violate operational
constraints can pose operational risks and compromise
system reliability. For example, a navigational anomaly
from a SW bug caused the 1998 Mars Climate Orbiter
mission to fail, resulting in a loss of approximately
$125M.2 Some anomalies can lead to leakage of
sensitive data such as 2017’s Equifax data breach.3

Rise of Supply Chain Attacks
Third-party, open-source, or commercial-off-the-shelf
(COTS) SW and HW are increasingly vulnerable to
supply chain attacks and responsible for faults. SW
supply chain attacks inject malicious code (i.e, mal-
ware) while HW supply chain attacks (i.e., hardware
Trojans or HTs4) compromise physical components,
chips, and electronics or the intellectual property (IP)
modules integrated into them. For instance, in 2018,
the US Department of Defense started to embrace
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open-source SW and architectures. Within 2 years,
90% of enterprise systems were composed of open-
source SW and the next year witnessed a 742%
increase in cyberattacks against them.5 Examples of
attacks on critical infrastructure include the BlackEn-
ergy power grid hack, the Colonial Pipeline cyber
incident, and Chernovite’s Pipedream.6 Nation-state
threat actors are not only targeting political and mili-
tary assets but positioning themselves across civilian
infrastructure in order to incite public chaos and panic.
A particular risk is the so-called Living off the Land
(LOTL) attack, which exploits existing tools within an
environment rather than installing new code or scripts.
This allows it to evade traditional security measures,
enabling hackers to dwell undetected in the victim’s
environment for extended periods.7

With such infrastructure being increasingly tar-
geted, supply chain vulnerabilities have become a
public safety issue and serious efforts are now be-
ing put in place to hold SW and HW makers liable.
The Cross Sector Cybersecurity Platform Goals by
the Cybersecurity and Infrastructure Security Agency
(CISA) and the U.S. National Institute of Standards and
Technology (NIST) recommend the use of Software
Bill of Materials (SBOMs) to document all third-party
components used for a given application.8 SBOMs
can support software composition analysis (SCA), pe-
riodic scans for newly discovered vulnerabilities, and
management policies to address and resolve zero-day
exploits before they impact critical systems. Hardware
assurance can be achieved in an analogous way.

All that said, BOMs and offline scans are not a
panacea for all supply chain attacks.8 They are only
as good as their data, the quality of which can vary by
source and method of collection, such as APIs, SDKs,
PDKs, and reverse engineering tools. For example, the
most common source of information is the National
Vulnerability Database (NVD) by NIST. Since February
12, 2024, infrequent NVD updates have left over 2,500
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vulnerabilities without essential metadata.9 In addition,
security is a “moving target” where malware/HTs that
perform the same action can change their appearance
to hide from static analyzers, and zero-day vulnerabil-
ities may remain hidden for years. In monitoring the
edge, particularly during a critical zero-day situation,
determining system status poses ongoing challenges.

Traditional Solutions and Limitations
SW-based malware detection approaches may be di-
vided into two classes: signature-based (or static) vs.
behavior-based (or dynamic).10 Signature-based de-
tection is the most often utilized approach in anti-virus
programs. It identifies malware by offline code analysis
that finds structures from a predefined malware signa-
ture database. Since signatures are from known mal-
ware, signature-based methods may be evaded by ei-
ther constructing new malware or utilizing obfuscation,
poylmorphism, or mutation to modify the signatures of
existing malware. The signatureless LOTL attacks will
also elude them.

Behavior-based approaches execute code within
a sandboxed, emulated, or controlled setting where
features are logged. For example, a code might be
labeled as malware if it modifies host files or registry
keys, establishes suspicious network connections, etc.
By monitoring behavior, they can identify known mal-
ware families as well as potential zero-day attacks and
polymorphic variants. However, time complexity and
high false positive rate are their weaknesses. False
positives can cause catastrophic and life-threatening
failures in critical infrastructure. For instance, a false
positive for an extreme weather event in a smart grid
could result in a shutdown that deprives hundreds of
thousands of people of energy, while also compromis-
ing vital healthcare services.6

SW-based malware detection approaches are also
incapable of detecting HTs, which are located in HW
rather than SW or program code. These limitations
underscore the urgent need for a more integrated HW-
SW solutions that address the potential susceptibility
of numerous organizations to malicious actors.

The Case for Real-time HW Monitoring
Continuous real-time monitoring and response are de-
sired to identify and mitigate zero-day flaws when they
get exploited in the real-world. In this regard, external
monitors that measure unintended side-channel leak-
ages are the most promising.11 First and foremost, un-
like malware/HT signatures, operational anomalies are
inescapable and cannot be hidden from side-channel
measurements. Second, external side-channel moni-

tors can be viewed as separate, trusted, and upgrad-
able “add-ons” to critical systems. Unlike traditional
techniques like scanning, sandboxing, and hardware-
support, external monitors do not impose burdensome
performance, resource, or power constraints on the
computational system being monitored.12 This allows
them to be easily integrated into legacy systems that
do not possess security infrastructure – a feature im-
portant because many critical systems are long-lived.
Further, separation from the critical system reduces
the possibility that the same supply chain vulnerability
affecting the critical system can bypass the external
monitor. In this manner, external monitors can assure
that a critical system performs its intended function
throughout its life cycle.

The Main Challenges and Proposed Solution
Traditionally, side-channel analysis has relied on large,
sophisticated instruments such as oscilloscopes and
PCs which are large, expensive, and infeasible to
deploy outside of a laboratory environment. To resolve
this, researchers at the University of Florida developed
RASC (short for, remote access to side-channels) an
external miniature platform that provides in situ mon-
itoring of a critical system to detect anomalies. Early
demonstrations of RASC were able to detect malware
in a course-grained manner as well as extract crypto-
graphic keys using power and EM side-channels.13–14

In this article, we describe how RASC can per-
form side-channel disassembly in real-time for fine-
grained malware detection. RASC specifically targets
anomalies that cause a change in arbitrary instructions
and/or sequences of instructions being executed on
a processor at run time. In this manner, RASC can
effectively overcome the limitations and complement
traditional SW-based detection approaches. Further,
by operating at run time, RASC can trigger more
precise incident response and recovery at the time of
attack, thereby avoiding the safety and reliability risks
to critical systems as quickly as possible. The rest of
this article describes RASC’s capabilities, use cases,
prototype, initial results for disassembly and malware
detection, and thoughts on future directions.

RASC OVERVIEW

Basic Anatomy of RASC
A critical system’s PCB and RASC are shown on the
top left-hand side of Figure 1. RASC would be placed
on top of the critical system component under monitor
(CSCUM, area highlighted in red). RASC consists of
two printed circuit boards (PCBs). The top PCB con-
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FIGURE 1. (Left) RASC’s positioning, anatomy, and dimensions. RASC prototype is about the size of a quarter; (Right) Concept of
operation (CONOP). RASC measures power and EM signals of a critical system component under monitor (CSCUM), processes
them, performs classification and sends results to an admin or digital twin for forensics and incident response.

tains analog-to-digital converters (ADCs) for digitizing
EM and power traces measured from the CSCUM and
a field-programmable gate array (FPGA) or microcon-
troller (MCU) for data processing. This board is also
connected to the power supply lines of the CSCUM
to measure its power consumption side-channel. The
bottom PCB has a magnetic probe/antenna and am-
plifiers to boost the EM signals emanating from the
CSCUM. Depending on the operational environment,
RASC could also include clock, communication, and
other chips. The bottom left-hand side of Figure 1
compares the size of our RASCv2 prototype’s PCBs
to a US quarter.

RASC’s HW and SW can be trusted and as-
sured. In contrast to the CSCUM, RASC is cheap
to manufacture – $100s to $1000s at low volume
depending on desired spec – and can be done so
onshore by a trusted party. RASC consists of basic
commercial-of-the-shelf (COTS) components that can
be purchased directly from original component manu-
facturers (OCMs). Alternatively, a custom ASIC could
be developed to implement several RASC functions
into a single chip and further reduce RASC’s size
– this ASIC could be verified as HT-free via reverse
engineering. RASC’s signal processing, classification,
and/or communication SW is simple enough to develop
and verify in-house.

Concept of Operation (CONOP)
RASC’s CONOP is shown on the right-hand side of
Figure 1. RASC simultaneously measures the power
and EM of the CSCUM, amplifies these analog sig-
nals, and converts them to digital signals. Using these
side-channels, its processing unit can perform coarse-

grained or fine-grained anomaly detection in real time.
In the former approach, the side-channel traces are
typically analyzed in the frequency domain where devi-
ations in periodic program activities (loops) can be de-
tected12. On the other hand, fine-grained approaches
use side-channels to reconstruct the executing code
(i.e., disassembly15) and compare them to the ex-
pected execution. Thus, they are even capable of de-
tecting anomalies in program execution that preserve
loop iteration time.

RASC’s monitoring capability can provide resilience
to supply chain vulnerabilities both before and after
identification of zero-day vulnerabilities. In the first
case, RASC can continuously monitor the CSCUM and
alert administrators, command and control (C&C), and
other security personnel when anomalies are detected.
An anomaly could indicate either a fault or exploitation
of an unknown vulnerability. Unlike traditional informa-
tion technology (IT) systems, the availability require-
ments of critical infrastructure forbid their downtime
and, thus, limit the amount of time available for foren-
sics and incident response. To investigate anomalies
found by RASC, we recommend the use of digital
twins (DTs). DTs model real-world physical products,
systems, or processes, and regularly synchronize with
them. A DT can use disassembly results from RASC
to simulate CSCUM dynamics, perform what-if analy-
ses of the malware/Trojan’s origin, trigger, or intended
payload1, and provide a test bed for interventions such
as containment, eradication, and recovery.16

In the second case, RASC can be “awoken” to
monitor the CSCUM when a zero-day vulnerability is
found in its BOM. Then, if an anomaly is detected
by RASC that C&C links to a zero-day exploit, a pre-
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prepared response can be triggered immediately as a
remedy. This establishes capabilities to further close
security gaps by tying the supply chain vulnerability
management and continuous monitoring capabilities
with the edge and disconnected environments.

Types of Anomalies Detected by RASC
Through side-channel based disassembly, RASC can
detect anomalies that alter the instructions executed
by a critical system’s processor from what is expected
from the SBOM. First and foremost, malware injected
through buffer overflow attacks, DLL injection, and
similar techniques can overwrite arbitrary code or
jump to specific locations in memory to achieve their
malicious objectives. When such code is executed,
RASC can identify each instruction using side-channel
analysis and compare the recovered instructions to the
authentic SBOM code. Divergence even by a single
instruction could be detected in this case.

In addition, RASC can handle return-oriented pro-
gramming (ROP), LOTL, and HT threats that do not
even inject new code into memory as long as they
alter program control flow. For example, the A2 HT was
developed at the University of Michigan in 2016.17 The
A2’s analog trigger is unlikely to be detected by RASC
due to its small side-channel footprint. However, its
payload – which changes the mode of a CPU from user
to supervisor – could result in "privileged “instructions
being executed without the system calls, interrupts,
and exceptions typically required to do so. By detecting
the execution of privileged instructions and the instruc-
tions preceding them through side-channels, RASC
can identify the unauthorized control flow and therefore
the A2’s payload activation.

Key RASC Specifications
The most important parameters impacting RASC’s
anomaly detection capabilities are (in order of im-
portance): (1) Sampling rate refers to the number of
side-channel samples per unit time. Empirically, we
have found that the sampling should be 20-100× the
CSCUM’s clock rate, ensuring there is enough tempo-
ral information for side-channel disassembly; (2) Sam-
ple resolution refers to the number of bits per sam-
ple after ADC conversion. Lower sample resolution
of power and EM side-channels may result in a loss
of information, potentially making it more challenging
to capture subtle variations that could be indicative
of class differences and/or anomalies; (3) Process-
ing capabilities affect RASC’s ability to handle large
volumes of measurement data, sophisticated feature
extraction and classification algorithms, and adaptation

to non-stationary environments. Parallel processing in
an ASIC or FPGA can significantly accelerate compu-
tations compared to an MCU.

RASC’s specs should be chosen based on the
complexity of the CSCUM (e.g., clock rate, pipeline
depth, or operating system) and the accuracy required
for anomaly detection. The higher the sampling rate,
sample resolution, and processing capabilities, the
higher RASC’s cost and power requirements.

RASC PROTOTYPE RESULTS AND
DISCUSSION

Prototype and Setup
RASCv3 was fabricated according to the specs shown
in Table 1 and used to perform side-channel disassem-
bly and malware detection in real time. Decimal2float,
ASCII, and ADConverter benchmarks from AVR-ASM-
Tutorial.net were implemented on an Arduino UNO,
which acted as the CSCUM. Power and EM traces
were collected by RASC. Beforehand, profiling was
performed to determine linear coefficients to com-
bine the two channels according to their mutual in-
formation14. Feature dimensionality reduction was per-
formed using the method of minimum redundancy and
maximum relevance (mRMR)18. A hierarchical classi-
fier11 was developed using the Quadratic Discriminant
Analysis (QDA) algorithm in Xilinx Vivado and loaded
onto RASC to classify traces into instructions. Further,
to improve accuracy of malware detection, hidden
Markov models (HMMs) were utilized.19

Disassembly Results
As part of the hierarchical classifier, the entire AVR
instruction set was divided into 8 groups of instructions.
The plot in Figure 2 displays the group recognition rate
according to the number of features used by the QDA
classifier. The dashed magenta and red lines compare
traditional principal component analysis (PCA) feature
selection with mRMR feature selection assuming the
use of both power and EM features. PCA compresses
all measurement samples into a smaller number of
features, but this is expensive to perform in real time.
The more efficient mRMR method uses only the subset
of features and achieves a similar recognition rate as
PCA. Both can obtain a 100% group recognition rate
in training with approximately 100 features.

The magenta and black lines in Figure 2 uti-
lize mRMR feature selection with only EM and only
power measurements, respectively. Compared to the
combined measurements (red), their recognition rates
are lower. Further, power and EM recognition rates
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TABLE 1. RASCv3 Prototype Specifications

Parameter Quantity or
Range

Chip Used

Cost∗ ≈ $400
N/A

PCB Dimensions (3.8cm)2

Voltage [-1V, 1V]

ADI LT2242Speed 250MS/s
Resolution 1mV, 12 bits

Amp Gain 10
TI OPA657Amp Bandwidth 1.6GHz

Processing 160MHz Xilinx Artix-7
XC7A100TMemory 1.6MB

Clock 167MHz TI CDCE906

∗ Cost is specified for low volume purchases of chips
and fabrication. It would be lower at higher volumes.

saturate at 97% and 82% recognition, respectively,
even after increasing the features far beyond 100 (not
shown). This demonstrates that power and EM con-
tribute unique information that can improve classifica-
tion accuracy while lowering classifier implementation
complexity (i.e., number of features).

The mRMR-QDA (Combined) classifier was imple-
mented in RASCv3 and used to perform disassembly
in real time. That is, for each instruction executed by
the CSCUM, the opcode was identified from the power
and EM trace measurements. The same algorithms
were also duplicated in an offline setup where a tra-
ditional oscilloscope with 5Gs/s and 16-bit resolution
was used to collect power and EM traces. The testing
accuracy for three benchmarks for offline and real-time
setups is shown in the second and third columns of
Table 2. In all three cases, the recognition rate is higher
than 80% with the offline setup obtaining about 8.5%
improvement over RASC. While not perfect, these
results are nonetheless impressive. In contrast to side-
channel attacks where 100s of traces may be used for
key extraction, disassembly is performed here with a
single trace for each instruction. If more than one trace
was available (e.g., different iterations of an instruction
within a loop), the signal-to-noise ratio (SNR) and
recognition accuracy could be increased.

Malware Detection Results
The mRMR-QDA (Combined) classifier was used
along with an HMM to distinguish the standard bench-
marks from hijacked benchmarks that were modified

FIGURE 2. Opcode group recognition rate as function of num-
ber of features for combined power and EM measurements,
for only power measurements, and for only EM measure-
ments. PCA is used for feature selection in the former case
while mRMR is used for all three cases.

with malware to alter their control flow. The fourth and
fifth columns of Table 2 display percentage of times
that non-malicious and malicious codes were cor-
rectly classified. For Decimal2float and ADConverter
benchmarks, the malware-free and malware codes are
perfectly distinguished. As soon as the control flow
changes, the malware is detected. Although the disas-
sembly opcode recognition errors for all 3 benchmarks
are similar, the HMM could not distinguish between
malware-free and malware codes all the time for the
ASCII benchmark resulting in a 1% false positive rate.
Nevertheless, these results represent a substantial
improvement over the ad hoc malware detection ap-
proach that only utilized power measurements in prior
work13 – see the sixth and seventh columns in Table 2.

Comparison with Alternatives
The approach taken by RASC bares similarity to
both signature- and behavioral-based malware de-
tection approaches while also complementing them.
Like signature-based approaches, its main criteria
for classification is disassembly. However, RASC dy-
namically performs disassembly via side-channels.
While this more akin to behavior-based approaches,
it avoids time complexity because monitoring occurs
post-deployment and in real time rather than in a
controlled environment. Further, the instructions dis-
assembled by RASC can be combined with DTs to
alleviate false positives.
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TABLE 2. Disassembly and malware detection testing results. ‘Disassembly Recognition’ columns refer to the percentage rate
that opcodes of instructions in the benchmark code are correctly classified using ‘Offline’ (i.e., traditional oscilloscope) and ’Real
time’ (i.e., RASC) measurement setups. The ‘Pass’ and ‘Fail’ sub-columns report the percentage rate that a code was detected
as non-malware and malware, respectively.

Benchmarks
Disassembly Proposed HMM Prior Malware
Recognition (%) Malware Detection Detection 13

Offline Real time Pass (%) Fail (%) Pass (%) Fail (%)

Decimal2float 91 82 100 0 83 17
Decimal2float (hijack) N/A N/A 0 100 0 100

ASCII 89 81 99 1 97 3
ASCII (hijack) N/A N/A 0 100 0 100

ADconverter 87 81 100 0 60 40
ADconverter (hijack) N/A N/A 0 100 3 97

RASC is not the first approach to side-channel
based anomaly detection. Examples where power has
been used include the work of Liu et al.19 and Eisen-
barth et al.15 while examples where EM was used
include Zajic et al.12 RASC is a spiritual successor
of these that expands their scope and usefulness by
(1) combining power and EM modalities to improve ac-
curacy of disassembly and malware detection, (2) per-
forming side-channel data collection and analysis in
situ rather than in a laboratory setting, and (3) perform-
ing classification and communicating results to security
admins in real time.

KEY POINTS AND PATH FORWARD
Real-time monitoring via side-channels can improve
the safety and reliability of critical systems by detect-
ing software and hardware supply chain attacks and
supporting incident response and recovery. Such a
capability was demonstrated above using the RASCv3
prototype which was able to achieve malware detection
accuracy with 100% accuracy and 1% false positives in
the worst case. These results are promising but further
work is needed.

First, a salient point from the disassembly recogni-
tion results is that sampling rate and resolution are not
the main limitations. The offline approach only obtains
about 8.5% improvement over RASC using the same
classification algorithms. This implies that the incor-
poration of state-of-the-art classification approaches,
such as deep learning (DL), are more important for
improving classification accuracy. Doing so is challeng-
ing due to the resource constraints of real-time moni-
toring systems. Thus, the path forward requires either
more efficient DL algorithms (e.g., obtained through
hardware-aware neural architectural search20) or more
computing resources (e.g., adding a DSP and/or ASIC

to RASC) for on-board processing.

Second, few (if any) side-channel monitoring so-
lutions, including RASC, have been tested on more
complex CSCUMs, such as 32-bit CPUs and SoCs.
The SNR of such targets will be much lower than
prior targets due to their multiple cores, larger caches,
pipelined execution units, sophisticated instruction
sets, higher clock frequencies, and advanced power
management schemes (e.g., dynamic voltage and fre-
quency scaling). Addressing the added complexity will
require other upgrades to RASC’s key specifications,
including sampling rate and resolution, along with more
advanced classification algorithms.

Finally, for situations where RASC’s specs and
algorithms have already reached their practical lim-
its, such as monitoring low-cost IoT edge devices,
other ways to improve detection capabilities should be
explored. For example, more complex processing or
classification could be migrated in full or in part to a
cloud environment using RASC’s wireless communica-
tion capabilities. Such tradeoffs should be investigated
and the workload between RASC and cloud can be
optimized to meet objectives along with real-time con-
straints. This article also offered the new perspective
of using DTs in conjunction with side-channel based
disassembly data and I/O logs to reduce false positives
and to improve diagnosis capabilities.
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