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Abstract— Counterfeit electronics impact the global economy
and pose life-threatening risks to critical systems and infras-
tructure. Analog/mixed-signal (AMS) chips are the most widely
reported counterfeit chip type, but existing countermeasures
are impractical for detecting them. In this paper, we propose
a method to detect recycled AMS counterfeits that exploits
degradation of power supply rejection ratio (PSRR) in low
drop out (LDO) regulators. Our zero cost approach does not
require information about the component’s design. Moreover,
due to the ubiquity of LDOs, it may apply to active and legacy
AMS system on chips (SoCs). To evaluate the feasibility and
effectiveness of our method, we use an automated test setup to
collect PSRR data from commercial off-the-shelf LDOs before
and after aging. Machine learning algorithms ranging from
unsupervised to supervised are applied to differentiate between
aged (i.e., synthetically recycled) and new LDOs. Silicon results
confirm that semi-supervised and supervised algorithms are
effective even with LDOs used less than 10 days.

I. INTRODUCTION

The number of counterfeit parts appearing in the electron-
ics supply chain is increasing every day, and poses serious
threats to economy, security, and safety. While there are
many categories of counterfeit integrated circuits (ICs) [1],
the recycled type is reportedly the most common. Recycled
counterfeits are used components that are harvested from
discarded printed circuit boards (PCBs) and then sold as
new on the market. Such ICs are prone to failure and should
not be used in critical applications. Counterfeit IC detection
has received considerable attention from researchers, but has
mostly focused on digital ICs. This is unfortunate because
the analog ICs make up the largest percentage of counterfeits
(25% in 2011 [2]).

Existing research for counterfeit IC prevention and detec-
tion can be broadly divided into two categories: (1) Counter-
feit detection for new digital ICs require additional circuitry.
Physical unclonable functions (PUFs) are a promising ap-
proach falling into this category. PUFs leverage the inherent
process variations in the chip to create unique identifiers for
every chip, thus preventing cloning and overproduction [3].
In [4], the combating die and IC recycling (CDIR) sensor
was developed to detect aging in recycled ICs by acting
as an odometer; (2) Counterfeit detection for active and
obsolete ICs do not require modifications to the IC design
and mostly consist of general electrical tests. These tests
examine the parameters of a device/IC and compare them
to a specification. They are suitable for detection of out-
of-spec/defective, recycled and remarked counterfeit types,
but are impractical to implement on the wide variety of ICs
in the market. Several other approaches (e.g., [5]) that detect
the degradation of parameters in recycled ASICs and FPGAs

require measurements from known new ICs (golden data) to
be available for comparison.

The above techniques are either restricted to digital ICs
or have limitations with respect to AMS ICs. First, design
approaches like PUFs and CDIRs require additional logic
and input/output (I/O) pins which are limited in AMS
ICs. Second, electrical tests require golden data/models. For
example, targeted electrical test exclusively for AMS ICs
were proposed in [6], but they require an accurate simulation
model of the design (unavailable for commercial-off-the-
shelf ICs) to determine the amount of aging/recycling. Third,
the existing techniques do not cover all types of AMS ICs.
Given the variety of AMS ICs available in market, a single
inexpensive technique for all of them has been elusive.
Further, a technique applicable to detect a recycled IC for
an AMS IC from one vendor may not be applicable to
another vendor since the designs are likely different and often
proprietary.

In this paper, we propose a novel technique for detection
of AMS recycled counterfeits which focuses on a ubiquitous
element in AMS ICs – low dropout regulators (LDOs). LDO
is a crucial component present in the power supply in most
types of ICs (including AMS and digital). Thus, detection
of aging effects on a LDO may help in detecting any type
of recycled IC at zero cost1. Our major contributions are
summarized as follows:
• We exploit chip aging effects of an LDO’s power

supply rejection ratio (PSRR) to determine if the IC is
recycled. PSRR is a critical metric available in any LDO
specification sheet which measures the ripple rejection
capability of an LDO. Our analysis reveals how the
LDO performance (PSRR) changes at lower and mid
frequency range.

• Using an automated test setup, we continuously collect
data from 128 LDOs of four different vendors at 1 hour
time intervals. For vendor 1 (V1) and vendor 2 (V2),new
and used LDOs are separable in as little as 4 hours of
accelerated aging (approximately 4 days in real-time).
For vendor 3 (V3) and vendor (V4) only 1-2 hour of
accelerated aging is enough for separation of new and
aged LDOs.

• We employ supervised to unsupervised machine learn-
ing (ML) methods to automatically determine a bound-
ary between aged and non-aged PSRR and classify recy-
cled ICs. With supervised ML, our accuracy to detect
a recycled LDO is ≈ 94.25% for V1 and ≈ 97.43%
for V2 with 4 hours of accelerated aging. Whereas, the

1No additional chip design area, power and delay



Fig. 1: LDO block diagram with PSR (linear scale) curve

mean accuracy for V3 and V4 are ≈ 87% and 91% after
1 hour of accelerated aging. While training with the
classifier extracted from V1 and applying on V2, V3 and
V4, we get an average accuracy of ≈ 78% with 4 hours
of accelerated aging. Whereas, extracting the classifier
from V3 and testing on all the other vendors V1, V2
and V4 gives an approximate accuracy of 90.5% thus,
relaxing labeled LDO requirements. We also find cases
where unsupervised ML is promising which has been
able to detect recycled LDOs with an average accuracy
of ≈70%.

The rest of the paper is organized as follows. The background
on LDOs and IC aging sources are introduced in Section 2.
The proposed methodology, aging analysis and ML concepts
are described in Section 3. The results and discussion are
explained in Section 4. Finally, we conclude and discuss
future research in Section 5.

II. BACKGROUND

A. LDO Preliminaries

An LDO is a type of linear regulator which is capable
of maintaining an output voltage even when the input is
very close to the output (low drop-out). Drop-out voltage
is defined as the input to output differential voltage at which
the regulator fails to regulate the output voltage until further
reduction of the input voltage. As shown in Figure 1, the
block diagram of an LDO consists of a feedback loop with
an error amplifier (EA), a pass transistor (single NMOS or
PMOS) and a resistor divider. A bandgap circuit provides a
fixed reference voltage to the EA. The pass transistor (PT)
acts as a variable resistor which is controlled by the EA and
the feedback resistor divider circuit level-shifts the output
voltage to the EA input. The EA monitors the error between
the input and the output voltage and accordingly controls
the gate to source voltage (vgs) of the PT to regulate the
output at a fixed voltage. If the feedback voltage is smaller
than the reference voltage then the gate voltage of the PT
is lowered increasing the vgs as well as the current flowing
through the PT; thus increasing output voltage. While, if the

feedback voltage is higher than the reference, the vgs of PT is
decreased, reducing the current as well as the output voltage.
The drop-out voltage for a generic LDO as shown in Figure
1, is actually the drain to source voltage drop which appears
across PT.

The role of an LDO is indispensable in the power supply
of any AMS IC. It provides isolation between the input and
output, thus rejecting the noise and ripples (glitches) in the
input supply at the output to provide a stable, low noise,
fixed output voltage. One of the major performance metrics
of an LDO is it’s capability of rejecting the ripples of the
input supply at it’s output. This is represented by the power
supply rejection ratio (PSRR) of the LDO. The ripple can
originate from the power supply or from a DC/DC converter
or even due to sharing an input supply between different
circuit blocks in the system. PSRR is expressed as PSRR =
20log( vout

vin
) where, vout and vin are magnitudes of voltage

glitch at output and input, respectively.

B. General Concepts of Transistor Aging
Transistor aging is one of the major causes of reliability

issue faced by modern ICs including AMS ICs. It is the
resultant of trapped charges and broken bonds at gate dielec-
tric interfaces which results in increase of threshold voltage
(Vth) and switching activity thereby, deteriorating transistor
performance in scaled modern devices. Bias temperature
instability (BTI) results in a positive shift in the absolute
value of Vth in both PMOS and NMOS. BTI is the condition
often referred to as DC stress when the PMOS/NMOS
has already pulled up/down but the gate is still biased in
strong inversion. The drain to source voltage becomes zero
signifying negligibly small lateral electric field. For PMOS,
the condition is called negative BTI (NBTI) whereas for
NMOS it is positive BTI (PBTI). Hot carrier injection (HCI)
occurs when the transistor is switching under strong inversion
(|vgs| ≈Vdd) and the lateral electric field is high (|vds| ≈Vdd).
During transistor switching, the accelerated carriers drift
towards the drain under the influence of the lateral electric
field. Channel hot carriers (CHC) are generated when the
source to drain current flowing though the channel reaches
an energy above the lattice temperature. These hot carries
gain energy and gets injected into the gate oxide forming
charge traps. As a result, this causes shift in the device
performance like Vth, transconductance and saturation current
of transistor as discussed in [7]. HCI degradation increases
as t1=2 (where t is time) and BTI increases as a factor of
tn where n = 0:1 to 0:2. But the multiplicative constant of
HCI is much smaller than that of BTI, thus for short amount
of time, BTI overshadows HCI as suggested in [8]. But for
longer time, HCI may effect in equal or more degradation in
device parameters as BTI.

The impact of the above aging phenomena on the reliabil-
ity of analog/AMS circuits has not been explored extensively.
We have found very few papers [9] that discuss how the
presence of some specific structures like feedback and diode
connected transistors in analog circuits can aggravate the
aging degradation. Further, there are very few models present
in the literature which can simulate accurately analog circuit
aging. The models presented in [9] only simulate a few



Fig. 2: Flowchart of proposed method for recycled LDO detection in supervised, semi-supervised, and unsupervised ML

specific and simple structures, and may not be able to tackle
more complex analog designs.

III. PROPOSED METHODOLOGY

We propose to detect recycled AMS ICs by exploiting the
aging degradation of LDO PSRR and machine learning (ML)
algorithms. The flowchart of the proposed method is given
in Figure 2. We only have shown two vendors for simplicity.
First, ML models are trained using input data (PSRR) from
LDOs. Note that the input features (PSRR from new and/or
aged LDOs from multiple vendors) vary based on the type
of ML used (supervised, unsupervised, or semi-supervised);
(1) For supervised learning, training and testing data set
both belong to different samples from the same vendor. In
total, we have data from four vendors (V1 through V4) and
use K-nearest neighbour (KNN) algorithm for supervised
learning; (2) In case of semi-supervised ML, we train the
classifier with one vendor but test it on another vendor. For
instance, we train with samples from V1 and test them on
V2, V3 and V4. This same pattern is repeated for all the
other vendors; (3) For unsupervised, no labels are provided
during training. In this paper, we employ variational bayesian
state space model, the k-means clustering for unsupervised
ML and KNN algorithm for supervised ML (more details
forthcoming). When an LDO (or SoC with an LDO) is
purchased from the market, it is considered as ”suspect”. The
suspect LDO PSRR is measured and the above classifiers are
used to detect whether it is recycled (aged) or new.

Note the following about assumptions for our method and
experiments found in this paper: (1) We assume that the LDO
output pin is accessible for proper implementation of our
method. In most LDOs, the output node is connected to a ca-
pacitor to ensure stability. Industrial LDOs even mention the
minimum capacitor load that must be attached to the LDO
output to stabilize its operation, in their spec sheets. Thus, it
is easy to reverse engineer the LDO output pin in an SoC or
printed circuit board (PCB); (2) We use commercial off-the-
shelf (COTS) LDO chips from the leading vendors to verify
the proposed method. This makes the entire method usable
to everyone without any requirement of additional design
or logic added to the system; (3) Due to the unavailability

of recycled LDOs, we artificially age LDOs (by thermal
heating at elevated temperature) to create synthetic recycled
counterfeit LDOs; (4) We only validate our approach on
standalone LDOs in this paper for simplicity. We emphasize
that our approach is generic and should be applicable to
LDOs embedded in AMS SoCs. In fact, this method can
be applied to any PCB/SoC which consists of an LDO be
it AMS or digital. This will be verified in future work; (5)
Also, we have analyzed the aging degradation of an LDO
with respect to a generic LDO design. The internal designs
of the LDOs which we inspected is proprietary to individual
design houses. However, the general principles should apply
to most LDO designs.

A. Analysis of Aging on LDO PSRR

In order to understand the effect of transistor aging in
LDOs, one needs to examine the transfer function of the
PSRR. Referring to Figure 1 and the explanation given in
[10], the power supply rejection of a generic LDO, i.e., PSR
(in linear model), can be represented as

PSR =
vout(s)
vdd(s)

=
K(1 + s

wa
)

(1 + s
wa

)(1 + s
wo

)+ AaAo
(1)

=
K

(1 + s
wo

)(1 + LG(s))
(2)

where

K =
RLeq

RLeq + rdsP
; wa =

1
roea ∗Cc

; wo =
1

(rdsP||RLeq)∗CD

Aa = gma ∗ roa; Ao = gmP(rdsP||rout) (||denotes parallel)
(3)

gmµveff; veff = vgs−Vth (4)

LG is the loop gain of the LDO feedback. rdsP refers to
the drain to source small signal resistance of PT while roa
is the small signal output resistance of the amplifier. The
equivalent output resistance at the node vout is taken as rout.
The error amplifier and the pass transistor have respective



Fig. 3: Block diagram of experimental setup

transconductances of gma and gmP and loop gains Aa and Ao.
The pole due to the node capacitance (Cc) at the output of
the error amplifier originates at frequency wa while the one
due to the equivalent output capacitance (CD) at the output
node originates at wo. RLeq is the equivalent capacitance
at output and we assume wa as our dominant pole. The
PSRR curve of most LDOs can be divided into two distinct
regions (see Figure 1). The first one (region 1) occurs in
the low and mid frequency range till the unity bandwidth
frequency (wreg : where the DC loop gain becomes 1) of
the LDO regulator. The second region (region 2) is in the
higher frequency range located after the regulator bandwidth
frequency. In region 1, the PSRR is actively controlled by
loop gain LG. In region 2, the loop gain has little effect and
the PSRR is dominated mainly by parasitics from input to
output, the output capacitor, PT impedance and the PCB.

PSRR Aging in Region 1: As shown in Equation (1),
the absolute value of PSR increases as LG decreases with
increasing frequency. This signifies that the capability of
the LDO to reject ripples decreases. The smaller the PSR,
the better the rejection as less ripples from Vdd appear
at Vout. High loop gain LG of the LDO ensures better
rejection in region 1. The loop gain of the LDO is directly
proportional to the individual open loop gains of the EA
and PT respectively as shown in Equation (1). The open
loop gain, on the other hand, is directly proportional to
the transconductance of the PT and the input transistors
of the EA as shown in Equation (3). Since Vth increases
with both BTI and HCI [9], transconductance gm and the
overall loop gain of the LDO (see Equations (4) and (3))
are degraded, thus impacting PSRR. In AMS circuits, the
transistors are biased to operate in saturation region for
maximum small signal gain and linearity. This configuration
causes more HCI degradation as shown by the authors in
[9]. They also show that the degradation (increase) in Vth is
enhanced due to the presence of feedback loops in circuits.
The feedback loops dynamically vary the operating condition
in AMS circuits to stabilize the circuit operation thus aging
the transistors more. Lastly, configuration of transistors also
impact respective aging degradation. Certain configurations
like diode connected transistors where Vgs = Vds receive the
worst stress as shown for technology node of 65nm and 28nm
in [9]. A generic LDO also consists of a feedback loop
which continuously monitors the error voltage (difference
between expected and actual output voltage) at the output.
This may enhance the stress on the input transistor of the
EA and the pass transistor increasing the respective Vth and

further accelerating transistor aging. Also, presence of diode
connected transistors in the EA as well as in current biasing
circuit can further aggravate aging.

PSRR Aging in Region 2: At the LDO unity gain
bandwidth (wREG in Figure 1), LG = 1 and the PSRR curve
mainly behaves as a resistor divider (K in equation 3). Thus
LG has less/no impact while the capacitances including the
parasitics affect the PSRR curve. The major capacitances
include CC and CD as shown in Figure 1; which are effective
in formation of the poles at wa and wo. With accelerated
aging, the gate to source and gate to drain capacitance of
PT may change leading to shift in the pole frequencies
(See equation 3). This phenomena of the variation of gate
capacitance (Cgd and Cgs) with respect to hot carrier degra-
dation has been exemplified for a 64-Mb DRAM chip in
[11]. They performed an electron beam probing to detect the
difference in gate capacitance before and after hot-carrier
stress for the DRAM chip. The experimental results show
that the precharge time of the DRAM chip increased from
20ns to 22ns after a 47 hour hot carrier stress demonstrating
significant change in gate capacitances. As the PT is usually
a huge transistor in generic LDO design, the increase in
the capacitance may substantially change the structure of
PSRR curve. We can see such changes in Figure 5d below
for V4 where the structure of PSRR curve is changing with
aging. We see certain peaks appearing at approximately 1.2
MHz, 2.3 MHz and 4MHz for V4 which were not present
in the initial PSRR curve. We suspect these are due to the
shifting of non-dominant poles and zeros with the changes
in gate capacitance of the PT due to HCI as well as BTI.
We plan to investigate the effect of transistor aging on the
gate capacitance of the PT of an LDO in our future works.

B. Experimental Setup and LDO Aging Results
In this section, we discuss the experimental setup and

the data collection procedure used throughout the paper. To
verify the above analysis, we collected data from 128 LDOs
from four different vendors (32 each) using an automated
test setup. The LDOs are aged at an accelerated rate using
80◦C in a Summit 12000B automated probe station and
the PSRR data is collected at 1 hour intervals for 9 hours.
Collecting aging data every hour enables us to determine the
optimum amount of aging required to detect recycled LDOs.
We have only used temperature acceleration factor here. This
is because, LDOs are designed to operate at a range of input
voltages, thus there is no specific operating voltage for a
LDO. According to [12], the elevated temperature converts
to an accelerating factor of 21. Thus, 9 hours of accelerated
aging converts to approximately 9 days of constant real time
aging. Note that we have verified in separate experiments that
the aging effects on the multiplexer and PCB are negligible.
Thus the aging shown in Figure 4 and 5 is solely due to the
LDOs.

The automated setup consists of the 64 LDOs (2 vendors)
on a PCB which are multiplexed through four 16 channel
and one 4 channel multiplexer as shown in Figure 3. We
have used 2 such PCBs to cover four vendors. (V1 and
V2 in PCB 1 while V3 and V4 in PCB 2) The output
current of the LDOs are maintained at approximately 30mA.



(a) V1:1hr aging (b) V1:4hr aging (c) V2:1hr aging (d) V2:4hr aging

(e) V3:1hr aging (f) V3:4hr aging (g) V4:1hr aging (h) V4:4hr aging

Fig. 4: Silicon data showing mean PSRR degradation of LDO for V1, V2, V3, and V4 for 1 hr (a,c,e,g) and 4 hr (b,d,f,h),
respectively. Note that for V3 and V4, the aging degradation of mean PSRR saturates after 3-4 hours of aging shown in
Figure 5 below

The input pins of LDOs include the supply voltage, an
enable pin, a ground pin, and a feedback pin. There is a
single output pin which provides the regulated output. We
applied an input supply voltage of 3V which is approximately
the mean voltage of the common operating voltage range
(0-5V) of the LDOs from the vendors. This ensured that
we are not applying a voltage too high or too low at the
input. We tried to mimic the standard operating condition
in which chips/SoCs operate and 3V is one of the standard
supply voltages. The LDOs were running during the entire
accelerated aging procedure, thus the enable pin was high.
The feedback pin was connected to a resistor divider, while
the resistors were chosen using the product data sheet. The
output pin was connected to a capacitor (4.7uF for V1,V3
and V4 and 1uF for V2) as mentioned in the product data
sheet to stabilize the LDO operation. The output pin was
also attached to a load resistor whose value was chosen to
maintain a 30mA output current. We initially tried to use a
high output current to accelerate the aging process, but it was
limited by the maximum output current drive of the buffers
on board and the function generator. As we had 32 LDOs
(each vendor) running simultaneously during aging we could
not exceed 30mA. We aged the LDOs at 80◦C which is one
of the standards for reliability testing as shown in [13].

We generate a noise signal of 500 mV(p-p) using an
arbitrary function generator and couple it to the power supply
Vdd with a capacitor. This procedure of PSRR measurement
is shown as one of the standards in [14]. The noise signal
is chosen such that: Vacmax + V dc < VABS (max) of the
LDO and V dc−Vac > VUVLO of the LDO. UVLO or the
undervoltage-lockout of an LDO is the electronic circuit used
to turn off the power when the input voltage drops below
the operating value of the LDO. This only means that when
the AC signal noise is applied one must be careful that the
voltage input still remains in the operating range of the LDO.
This signal is passed through a buffer and is applied at the

input of the LDOs. The select lines of the multiplexers are
applied using National Instruments (NI) myDAQ and the
output of the LDO is connected to a spectrum analyzer to
measure the power spectrum. A Matlab program from a PC is
used to apply select signal to the NI myDAQ and collect the
output from the spectrum analyzer serially. The PSRR curves
are generated for each LDO across a range of frequency from
1Hz to 2MHz at intervals of 5KHz.

The silicon data depicting transistor aging effect on PSRR
of 128 different LDOs from 4 different vendors (32 LDO
each vendor) is shown in Figures 4 and 5. The PSRR (in
dB) is shown in negative as it implies suppression of output
ripples. The more the absolute value of PSRR ( |PSRR| ), the
better the suppression. As we see in Figure 4, for V1 and
V2, |PSRR| degrades with aging for all the vendors. The
frequency range 1Hz-500KHz refers to the lower frequency
range where the PSRR is actively controlled by the loop gain
of the LDO as explained in Section III-A. With 1 hour of
accelerated aging at 80◦C, the mean PSRR degrades for both
the vendors V1 and V2 but it is difficult to discern because of
the process variation (shown by shaded regions) in between
the LDOs. But as we increase the time of accelerated aging
to 4 hours, we see the mean PSRR degrade with aging and
the separation between them can be easily distinguished. Due
to the wide process variation in between chips (considering
3s variation shown by shaded region in Figure 4), the aged
PSRR distribution still overlap with the new one. But the
new and aged PSRR distribution is completely separable
considering 1s process variation (applicable to V1 and V2
after 4hr of aging and V3 and V4 after 2 hrs of accelerated
aging). For the other vendors V3 and V4, the PSRR also
degrades after 1 hour of accelerated aging as we see in Figure
5 but unlike V1 and V2, the PSRR degradation for V3 and
V4 saturates after 1-1.5 hours of aging. After that for V3,
we see very small shifts in mean PSRR till 3 hr of aging as
in Figure 5a. For V4, with increased accelerated aging, we



(a)

(b)

Fig. 5: Silicon data showing (a) mean PSRR degrading across
1hr, 2hr and 3hr of accelerated aging for V3 after which it
saturates (b)shift in poles at higher frequencies and saturation
of degradation across 4hr, 5hr, 10hr and 15hr of accelerated
aging for V4.

see certain undulations on PSRR curve which increases till
15 hours of aging as depicted in Figure 5b. It can be seen
that the curves increase from 4 hrs through 15 hrs of aging
whereas the mean PSRR degradation has already saturated
after 4 hrs. As discussed in Section III-A, this can be due to
shifting of intrinsic capacitances of the pass transistor which
may shift the dominant (wo) as well as the non dominant
poles (wa). Also at higher frequency, the gate to drain and
gate to source capacitance of the PT may behave as a short
circuit and can directly couple the Vdd noise to the gate of
the PT and the output of the LDO, resulting in degraded
PSRR at the output. It is also interesting to note that the
process variation (3sigma) in between PSRRs decreases with
the aging of the chips which is evident for all the vendors
V1 through V4 in Figure 4.

The difference in the aging behaviour among V1, V2, V3
and V4 may be attributed to the inherent differences in the
design of the LDO including the technology nodes applicable
to each of them. The input voltage range for V1 and V2 were
approximately 0-5.5V whereas that for V3 and V4 were 0-
20V. The output current range for all the vendors were from
10mA to 100mA. For similarity of test conditions and to
limit power consumption for each PCB we have taken the
common input voltage (0-5.5V) range among all the vendors
and applied a mean 3V input. But, considering V3 and V4
can operate at higher voltage ranges, the degradation can be
different for V3 and V4 compared to V1 and V2. Irrespective
of the aging behaviour, the degradation is prevalent in all the

vendors and in all the cases the degradation is maximum at
initial hours of aging and saturates after a given aging time.
Instinctively, it can be concluded that, since the mean PSRR
values before and after aging can be separated, if we feed
this data to supervised machine learning (ML) algorithms
then a boundary between new and aged (synthetic recycled)
can be obtained. For unsupervised ML, it can be challenging
given the variability between vendors and process variation
within a specific vendor.

C. Applicability of Gaussian Mixture Models
As one of the key steps for ML is data representation, we

begin by explaining how the aforementioned experimental
data can be prepared to feed into an ML algorithm. One can
observe that our dataset is multidimensional and collected
over pre-defined time and frequency ranges. For an LDO and
at given frequency, the PSRR measurements are done every
hour in a 9 hour window. It is clear that over this dimension,
the sequence of the measured values can be represented
as a time series. If we examine our dataset over the other
dimension, i.e., frequency, we observe that the sequence of
the measured PSRRs is ordered and exhibits irregularities,
e.g., environmental noise. In other words, this sequence ex-
hibits the characteristics of a time series, although being non-
temporal naturally. Therefore, our problem of classifying/
clustering the data collected from LDOs over a range of
frequency can be thought of as a sequence labeling problem,
where the sequences are non-temporal, but time series-like.
In the ML-related literature, such a problem can be tackled
by applying time-series analysis adapted to reflect the non-
temporal nature of the data, see, e.g., [15], [16]. A common
approach to analyze a sequential, structured, time series-like
data is to employ a state-space model (SSM).
State-space model (SSM). In an SSM, it is assumed that
a sequence of measured data y (in a vector form) y1;y2; · · ·
is generated by some hidden state variables x1;x2; · · · with
joint probability,

p(x1:F ;y1:F | q) =
F

Õ
f =1

p(x f | x f−1;q) p(y f | x f ;q)

where q is the model parameter, x1:F and y1:F are the
sequence of F sequences of the hidden state variables and
the measurements, respectively. Note that the indices f and
F stress that our data is collected over a frequency range
in an ordered manner. In this paper, we stick to the most
straightforward type of SSMs, i.e., linear-Gaussian state-
space models composed of multivariate Gaussian-distributed
variables with a linear relationship, as formulated in Equa-
tion (5) [16].

y f = Cx f + v f

x f = Ax f−1 + w f (5)

The linear relationship is shown through C and A matrices,
and the vectors v and w represent uncertainty. These two
vectors also follow Gaussian distributions, with covariance
matrices R and Q, respectively. In the context of our problem,
q = (A;C;Q;R) are the parameters of an LDO. The vectors
v and w account for the total impact of aging, environmental



noise, uncertainty imposed by the measurement process, etc.
While the former requires more elaboration, it is common
to assume a Gaussian distribution for the latter ones. To this
end, we emphasize that for our ML approach, instead of a
gate-level characterization of aging, it suffices to model the
impact of aging as an uncertainty – represented by a Gaussian
variable (see, [17] for an extensive discussion on this model).
Markov Assumption. With regard to the above definition
of linear-Gaussian SSMs, another important aspect of data
representation is the dependency of the hidden state variables
x f on one another, or, more precisely, having first-order
Markov dynamics. In practice, this variable can be related
to the physical characteristics of an LDO. However, for the
purpose of our analysis, we adopt the frequency, from which
we begin to measure the PSRR values. This choice is very
natural since it is known that if we measure the PSRR value
at a given frequency, i.e., fi, and then switch to the frequency
fi+1, the value of the PSRR measured at this frequency
depends heavily on the frequency fi. This holds according to
the transfer function of PSRR in Equation (1), where, PSRR
(see Figure 1) degrades as a function of the initial LG.
Parameter Optimization. To learn the parameters of the
linear Gaussian SSM defined above, a well-studied approach
is the Expectation-Maximisation (EM) algorithm [16]. Infor-
mally, this algorithm first fits some arbitrary density function
over the hidden variables for a fixed model parameter (i.e.,
the step “E”), and then in the next step, “M”, the model
parameter is re-estimated by maximizing the likelihood
(see [18], [16] for more details). Despite the fact that this
algorithm is applicable in our case, one should consider
applying it carefully since, similar to other maximum like-
lihood approaches, the EM algorithm may fail to determine
the best model size and structure due to the complexity of
the model. To address this issue, it is suggested to perform
variational Bayesian inference over the parameters of prob-
abilistic models in conjunction with the EM algorithm [16],
[19]. This type of approximation is helpful to face two major
obstacles. First, Bayesian approaches enable us to guess
some prior distribution over the space of parameters p(q) and
improve it step-by-step, when analyzing the data. However,
this is computationally heavy while all of the so-called model
uncertainties, i.e., all possible model parameters q and their
respective p(q), should be taken into account. The second
contribution of variational Bayesian inference is to resolve
this issue, and consequently, reduces the amount of data
required for the learning process [19].

To sum up the above discussion, we emphasize that
according to the complexity of our linear Gaussian SSM
caused by the uncertainties imposed by the nature of our data,
we apply a combination of variational Bayesian inference
and EM algorithm, hereafter called the VB method in this
paper. It is also important to observe the close relationship
between the EM algorithm and the k-means algorithm,
widely accepted as a standard approach to cluster the data.
Therefore, in the next section, we present the results obtained
by applying the k-means algorithm as well as the VB method.

Besides, we demonstrate the applicability of supervised
algorithms in our scenarios as well. To this end, as one of the

closest approaches to the VB and the k-means methods, we
apply the KNN algorithm [18]. The rationale behind this ap-
proach is that examples exhibiting similar properties should
be in close proximity to one another in a dataset. Hence,
when an unseen, new example is given to the algorithm, its
label should be similar to the label of its nearest neighbors.
These k nearest neighbors are determined according to a
distance metric (e.g., Euclidean distance), and then the label
of the new example is the most common label of those
k nearest neighbors. Therefore, for KNN, the number of
neighbors plays an important role. Regarding this, to classify
a new example correctly, a large k should be selected if the
algorithm has to deal with highly noisy examples. On the
other hand, if the classes of the examples are located within
a close distance, a smaller k should be chosen [20].

IV. RESULTS AND DISCUSSION

Using the experimental setup and data from Section III-B,
we present and discuss the results of applying ML algorithms
to distinguish aged and new LDOs.
Experiment Design: To conduct ML analyses, we consider
three main scenarios. 1) Supervised classification: We begin
with the most straightforward setting, where the labels for
LDOs from one vendor are given to the algorithm. The core
idea here is to learn from a subset of LDOs (new and/or
aged) and verify to what extent the obtained model can be
generalized to other LDOs from the same vendor. 2) Semi-
supervised classification: This scenario is of great impor-
tance to our framework since the model is trained on a subset
of LDOs produced by a vendor and then tested on LDOs
from another vendor. This relaxes the above assumption so
that golden data (i.e., PSRR from known new LDOs) need
only be available from a single vendor. 3) Unsupervised
clustering: In this setting, no label is required, although at
least one golden LDO (new or aged), as chosen by a subject
matter expert, should be provided. To figure out whether
unseen LDOs are new or aged, an unseen LDO and the
golden LDO are taken into consideration. It is evident that
if these LDOs are of the identical age, solely one cluster
would be delivered after the learning process. But if there is
solely a slight difference between their ages, the algorithm
should be able to cluster them by taking one of the LDOs as
the new one. Under this scenario, two possible approaches
can be taken. In Case 1, we solely measure the PSRR of
the component, when it is given to us. Afterward, we give
the algorithm the measured values in a pair-wise manner
(i.e, golden and suspect), and based on the clusters made by
the algorithm, the LDO that is identified as new or aged.
On the other hand, in Case 2 we measure the PSRR of the
component and repeat this after a while, e.g., after following
a synthetic aging (partially destructive) procedure on suspect
LDOs. This case is relevant when an additional aging can
be performed.

In all the above scenarios, as mentioned in Section III-
B, our data set is collected from LDOs manufactured by
four different vendors. From each LDO, PSRR values are
measured over a wide frequency range, i.e., from 1 Hz to
2 MHz, every 5 kHz. This range is chosen with respect to
an observation made during analysis and experimentation–



Fig. 6: Supervised classification: detecting accuracy of new
chips over hours of aging by applying kNN classifiers to our
dataset [dot:mean (m) ; bar:standard deviation (3s )].

the greatest possible separation between the new and aged
LDOs (on average) can be observed in this frequency range.
Moreover, we use ML algorithms that are publicly available,
for instance, embedded in Matlab software package [21]. The
point here is that no special know-how in ML algorithm
development is required to employ our detection.
Results for Supervised & Semi-supervised Classification:
In these experiments, the labels of the LDOs are given to
the classification algorithm. In our experiment, k is chosen
by fitting the best classifier to our data automatically. For all
of the vendors, after running the KNN algorithm provided in
the Matlab software package, k is set to 5 by the algorithm
as the best possible parameter.

The results for detecting new and aged LDOs, obtained
by employing the KNN algorithm, are shown in Figure 6
and Figure 7, respectively. For both groups of new and aged
LDOs, to assess the accuracy of the classification, we adopt
the 10-fold cross-validation method, and the average and the
standard deviation (over the set of LDOs from each vendor)
of the accuracy are reported. In other words, the results
illustrated in Figure 6 and Figure 7 are obtained after running
the algorithm 10 times. In each round of this experiment, the
algorithm is trained on 9 folds (i.e., portions) of the dataset
and tested on the remaining fold. By doing so, we assure
that the unseen folds are chosen uniformly, and the accuracy
of the label prediction is computed in a fair manner, i.e.,
exhibiting less bias [22]. The most important message that
these results convey is that a classification model extracted
for a given LDO from each vendor can be used to classify
the other LDOs from the same vendor, with a sufficient level
of accuracy, i.e., up to 97%.

A natural question to ask would be whether, for one vendor
to another, such generalization is possible. To answer this,
we conduct another set of experiments, whose results are
presented in Figure 8 and 10. More specifically, classifiers
are extracted from the datasets containing the data collected
from a new and an aged (i.e., aged for 1 hour, 4 hours and
9 hours) LDOs from a vendor. These classifiers are further
used to categorize unseen LDOs from the other vendors. For
a given set of LDOs, new (i.e., the hours of aging equal zero)
or aged, the average and standard deviation over the set is

Fig. 7: Supervised classification: detecting accuracy of aged
chips over hours of aging by applying kNN classifiers to our
dataset [dot:mean (m) ; bar:standard deviation (3s )].

computed and plotted in Figures 8 and 10.
As can be seen in these figures, if we take the average

over the age of the suspect LDOs, the classifiers extracted
from V1 can distinguish whether an LDO manufactured by
V2, V3, or V4 is new or aged, with the probability up to
71.31%, 79.72%, 82.29%, respectively. Following the same
procedure, if the classifier is extracted from V3 is examined
on the LDOs from V1, V2, or V4, the accuracy is up
to 92.18%, 93.56%, and 85.88%, respectively. We repeat
this experiment on all possible combination of vendors, i.e.,
extracting a classifier from LDOs made by vendor Vi (1≤ i≤
4) and testing that on LDOs from Vj (i 6= j). The minimum
average accuracy computed over the age of the suspect LDOs
is 69.27%. The conclusion can be made that implementing
this strategy is feasible, if an aged LDO and a new one
from the same vendor are available, which holds in practice.
Results for Unsupervised Clustering: Contrary to the
above mentioned scenario, no label is given to the clustering
algorithm in this experiment. We use the k-means function
embedded in the Matlab [21] as well as the VB method
included in a publicly available software package [23]. When
applying the k-means function, in order to improve the
accuracy of clustering, we apply the Silhouette method to
validate the consistency within clusters. Furthermore, we take
advantage of the replication (i.e., re-sampling) technique to
find lower, local minima of the Euclidean distances between
examples. Moreover, once the k-means algorithm is run, the
centroids it determines are further used to rerun the algorithm
to deal with possibly noisy examples. Figure 9- Figure 13
illustrate the results of applying either the k-means or the
VB method in two cases.

In Case 1, the PSRR values measured from the golden
LDO and the suspected one are fed into the algorithm,
whereas in Case 2, both of these LDOs undergo a synthetic
aging procedure for 1 hour to 4 hours. The PSRR values
corresponding to these hours of artificial aging, along with
the initial values measured in Case 1, are fed into the
algorithm. The accuracy of the clustering after each stage
of artificial aging is reported. Note that on the X-axis, we
report the minimum age of the LDOs under test. Moreover,
by initial aging equals zero we mean that a new LDO is


